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Abstract. We prove that 7-located locally 5-large simplicial complexes are as-
pherical.

1. Introduction

A simplicial complex is flag if every set of vertices pairwise connected by edges
spans a simplex. For k ≥ 5, a flag simplicial complex is k-large if it has no induced
cycles of length 4 ≤ n < k. A simplicial complex is locally k-large, if each of its vertex
links is k-large. This notion was introduced by Januszkiewicz and Świa̧tkowski [6],
and independently by Haglund [3], as a simplicial analogue of a locally CAT(0)
(i.e. nonpositively-curved) cube complex. They showed that such complexes are
ubiquitous in any dimension, and come with interesting automorphism groups. A
cornerstone feature is that for k ≥ 6 they are aspherical. The 1-skeleta of simply
connected locally 6-large simplicial complexes were studied earlier in graph theory
under the name of bridged graphs, see [1] for a survey.

The boundary of the icosahedron is locally 5-large, so in order to obtain asphericity
under this weaker condition, Osajda introduced an extra hypothesis of m-location [9]
(we will give the definition in a moment). 7-located locally 5-large simplicial complexes
include many 3-manifolds, as well as all locally weakly systolic complexes [4], which
were studied earlier in [2,8]. The properties of m-located complexes were investigated
in [4, 9].

Maybe the most prominent example of a 7-located locally 5-large simplicial com-
plex is the triangulation of the hyperbolic space H4 where each of the vertex links is
isomorphic to the boundary of the 600-cell. The symmetry group of that triangula-
tion is the Coxeter group with Coxeter diagram the linear graph of length 4 with
consecutive labels 5333. We are interested in this triangulation since the associated
Artin group is one of the smallest Artin groups for which the K(π, 1) conjecture,
asking for the contractibility of the associated Artin complex, is still open.

In this paper, we prove the following related result.

Main Theorem. Every 7-located locally 5-large simplicial complex is aspherical.

2. Location

Let X be a flag simplicial complex.

Definition 2.1. A k-wheel W in X is an induced subcomplex isomorphic to the
cone over the k-cycle. We write W = (v0, v1v2 · · · vk), where the centre v0 is the cone
vertex and v1, . . . , vk are the consecutive vertices of the boundary cycle.
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A pair W = (W1,W2) of wheels, with W1 = (v0, v1 · · · vk),W2 = (w0, w1 · · ·wℓ), is
a (k, ℓ)-dwheel if

• vk = w0,
• wℓ = v0,
• vk−1 = wℓ−1, and
• either v1 equals w1 or is a neighbour of w1.

The boundary ∂W of the dwheel W is the cycle v1 · · · vk−1wℓ−2 · · ·w1. (If w1 = v1,
then we discard the redundant w1.) If v1 = w1, then we say that W is planar.

Definition 2.2. Let m ≥ 4. X is m-located, if for every dwheel W = (W1,W2) with
|∂W | ≤ m, all the vertices of W1 ∪W2 have a common neighbour in X.

Example 2.3. Let X be the simplicial complex that is the triangulation of the
hyperbolic space H4 where each of the vertex links is isomorphic to the boundary
S3
600 of the 600-cell, which is 5-large. Note that the vertex links of S3

600 are isomorphic
to the boundary S2

20 of the icosahedron. Since each induced 5-cycle in S3
600 and S2

20

is the boundary of a 5-wheel, each 5-wheel in X can be extended to the join of the
5-cycle and a triangle ∆. Furthermore, each 6-wheel in X can be extended to the
join of the 6-cycle and an edge e. Hence X does not contain a planar (5, 6)-dwheel
(W1,W2) with W1 ∪W2 without a common neighbour, since otherwise appropriate
∆ and e are disjoint and so ∆, e, and v1 = w1 span a simplex of dimension 5 in X,
which is a contradiction. The (5, 5)-dwheels are excluded similarly, which implies
that X is 7-located.

2.1. Disc diagrams. A disc diagram D is a simplicial complex homeomorphic to a
disc. A disc diagram in X is a simplicial map f : D → X that is nondegenerate, i.e.
does not send any edge to a vertex. We say that f has boundary cycle f(∂D). A disc
diagram f : D → X is minimal if it has minimal area (i.e. the number of triangles
in D) among all the diagrams in X with the same boundary cycle. We say that f is
reduced if it is locally injective at D \D0. The following is a well-known variation of
a result by Van Kampen.

Lemma 2.4 ([7, Lem 2.16 and 2.17]). Any homotopically trivial cycle embedded
in X1 is the boundary cycle of a disc diagram in X. Any minimal disc diagram is
reduced.

Lemma 2.5 ([4, Thm B]). If X is 7-located and locally 5-large, then so is D for
each minimal disc diagram D → X. In other words, D has no

• interior vertices of valence 3 or 4, or
• neighbouring interior vertices with valences 5 and 5 or 6.

Since by (the proof of) [4, Cor 4.7] each D above with |∂D| = 4 has at most five
triangles, we have:

Corollary 2.6. Each D as in Lemma 2.5 is 5-large.

Remark 2.7. The κ′ method from the proof of Proposition 3.2 can be used to
give an alternative proof of Corollary 2.6, since in a minimal counterexample to
Corollary 2.6 each valence 5 interior vertex has non-positive κ′.
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3. Lunar diagrams

In this section, we assume that all disc diagrams D are 7-located and locally
5-large. On the 1-skeleton X1 of X we consider the path metric d, where all the
edges have length 1.

Definition 3.1. Let x and v be distinct vertices of a simplicial complex X, and
suppose that γ1 and γ2 are geodesics from x to v in X1 that are disjoint except at
the endpoints. A minimal diagram D → X with boundary γ1 ∪ γ2 is a lunar disc
diagram between x and v.

If the identity map D → D is lunar (that is, if ∂D is a union of geodesics γ1, γ2
in D1 from x to v), then D is lunar. Then for a vertex u of ∂D, an interior vertex
of D of valence 5 is u-exposed, if it is a neighbour of both neighbours of u in ∂D.

By Corollary 2.6, for each u there is at most one u-exposed vertex.

Proposition 3.2. Let D be a lunar disc diagram between x and v and let v1, v2 be
the neighbours of v in ∂D. Then

(i) v1 and v2 are neighbours and have a common neighbour closer to x than v1, v2,
or

(ii) there is a v-exposed neighbour v′ of v whose neighbours v′1, v
′
2 distinct from

v, v1, v2 are closer to x than v′.

In the proof, we need the following.

Lemma 3.3. Let D be a lunar disc diagram between x and v and let v1, v2 be the
neighbours of v in ∂D. Then there is a lunar disc diagram D′ ⊆ D between z and v
such that

(1) the path v1vv2 lies in ∂D′,
(2) the function d(·, x)− d(·, z) is constant on all the vertices of D′ at distance

≤ 2 from v,
(3) each vertex on ∂D′ has valence at least 4, except possibly for z, v, v1, or v2,
(4) each interior vertex of D′ of valence 5 that is a neighbour of ≥ 3 vertices

of ∂D′ is u-exposed with u ∈ {z, v, v1, v2}.

Remark 3.4. By (1) and (2), if D′ satisfies Proposition 3.2(i) or (ii), then so does D.

Proof of Lemma 3.3. Let D′ ⊆ D be the lunar disc diagram of minimal area satisfying
(1) and (2). Then D′ satisfies (3). To verify (4), let z0 be an interior vertex of D′ of
valence 5 that is a neighbour of m ≥ 3 vertices of ∂D′.

If m = 5, then by (3) z0 is v-exposed. The same holds for m = 4, unless z0 has
exactly 2 neighbours on each γ′

i, which are distinct from z, v, and consecutive by
Corollary 2.6. We will discuss this possibility below, together with the case m = 3.
Namely, if m = 3, then z0 is u-exposed with u ∈ {z, v, v1, v2}, unless it has, say, two
consecutive neighbours z1, z2 on γ′

1 and a neighbour z3 on γ′
2, all of which are distinct

from z, v. We can assume d(z1, v) = d(z2, v)− 1. Let n = d(z0, v). By the triangle
inequality, we have d(z1, v) = n− 1 or n, and d(z3, v) = n− 1, n or n+ 1. In each of
the cases we will prove that z0 is u-exposed, with u ∈ {z, v, v1, v2}, or we will reach
a contradiction by finding a properly contained lunar disc diagram D′′ ⊊ D′ between
a vertex z′ of D′ and v satisfying (1) and (2) and hence contradicting the minimality
hypothesis. Consider the top and bottom components obtained from D′ by cutting
along the path z1z0z3 containing v, and z, respectively. Each of the two neighbours
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of z0 distinct from z1, z2, z3 is top (resp. bottom) if it lies in the top (resp. bottom)
component.

Case 1: d(z1, v) = n− 1.
a) d(z3, v) = n− 1. In that case, if z0 is not v-exposed, then n ≥ 3 and we can

take z′ = z0.
b) d(z3, v) = n. If z0 has exactly one bottom neighbour, then we can take z′

to be that vertex. Note that the function from (2) is constant on all the
vertices of D′′ except for z′ and z0, since it is constant on z1, z2, z3 and the
top neighbour of z0, which separate the remaining vertices of D′′ from z′

and z. If z0 has two bottom neighbours, then we can take z′ = z3. If z0 has
no bottom neighbours, then z2 is a neighbour of z3, so they have a common
neighbour z′ ̸= z0 (which is distinct from z if z0 is not z-exposed).

c) d(z3, v) = n+ 1. In that case, take z′ = z3.
Case 2: d(z1, v) = n.

a) d(z3, v) = n− 1. In that case, take z′ = z2.
b) d(z3, v) = n. If z0 has no bottom neighbours, then take z′ = z2 (which is

distinct from z if z0 is not z-exposed). If z0 has exactly one bottom neighbour,
then denote it z4. If z0 is not v-exposed, then n ≥ 2. Then we can take as z′

the common neighbour of z2 and z4 distinct from z0 (which is distinct from z
if z0 is not z-exposed). Note that the function from (2) is constant on all the
vertices of D′′ except for z′ and z4, since it is constant on z0, z1, z2, and z3,
which separate the remaining vertices of D′′ from z′ and z. If z0 has two
bottom neighbours, then this contradicts d(z0, v) = n.

c) d(z3, v) = n + 1. If z0 has at least one bottom neighbour, we obtain a
contradiction with d(z0, v) = n. If z0 has no bottom neighbours, then z2 is a
neighbour of z3, and they have a common neighbour z′ ̸= z0 (which is distinct
from z if z0 is not z-exposed).

□

Proof of Proposition 3.2. By Remark 3.4, and Lemma 3.3, we can assume that
D = D′ and satisfies Lemma 3.3(3,4). For any interior vertex w of D′, let κ(w) = 6
minus the valence of w. For w in ∂D′, let κ(w) = 4 minus the valence of w. By the
combinatorial Gauss–Bonnet theorem (see e.g. [7, Thm 4.6]), the sum of all κ(w)
equals 6. For each interior vertex w of valence 5, let κ′(w) = κ(w)− N

3
, where N is

the number of the interior neighbours of w (all of which have valence ≥ 7). For each
interior vertex w of valence ≥ 7, let κ′(w) = κ(w) + N

3
, where N is the number of

the interior neighbours of w of valence 5. We let κ′(w) = κ(w) for the remaining w.
Then the sum of all κ′(w) equals 6 as well.

If there is a v-exposed vertex, we call it v′. If such a vertex does not exist, but
there are vi-exposed vertices, then we call them v′i. If there is an x-exposed vertex,
we call it x′.
Claim. κ′ is non-positive except possibly at

• x, v, where it is ≤ 2,
• vi, where it is ≤ 1,
• u-exposed vertices, for u ∈ {x, v, v1, v2}, where it is ≤ 1.

Indeed, if an interior vertex w of valence 5 is not u-exposed for u ∈ {x, v, v1, v2},
then by (4) we have N ≥ 3, and so κ′(w) = κ(w)−N

3
≤ 1−1. On the other hand, if an
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interior vertex w has valence 7, then we have N ≤ 3 and so κ′(w) = κ(w)+N
3
≤ −1+1,

and if it has valence k ≥ 8, then N ≤ k
2

and so κ′(w) = κ(w) + N
3
≤ 6 − k + k

6
=

6− 5k
6
< 0. This justifies the Claim.

To verify (i) or (ii) it suffices to check that
(i) κ′(v) = 2 and κ(vi) = 1 for some i, or
(ii) κ′(v) = κ′(v1) = κ′(v2) = 1, and v′ exists.
Note that if one of the v′i exists, then κ′(vi) = 1 and κ′(v) ≤ 0. If both v′i exist,

then κ′(v) ≤ −1.
Thus for the sum of all κ′(w) to be equal to 6, the only remaining possibilities, up

to a symmetry, are:
• κ′(x) = κ′(v) = 2, κ′(x′) = κ′(v′) = 1, κ′(v1) = κ′(v2) = 0,
• κ′(x) = 2, κ′(v) = κ′(v1) = κ′(v2) = κ′(x′) = 1, and there is no v′,
• κ′(x) = 2, κ′(v) = κ′(v1) = κ′(x′) = κ′(v′) = 1, κ′(v2) = 0, or
• κ′(x) = 2, κ′(v1) = κ′(v2) = κ′(v′1) = κ′(v′2) = κ′(x′) = 1, κ′(v) = −1.

However, in all these cases, by (3), the vertex x′ has at least one interior neighbour,
which contradicts κ′(x′) = 1. □

4. Contractibility

Lemma 4.1. Suppose that K is a flag simplicial complex
(1) of diameter ≤ 2,
(2) 5-large, and such that
(3) any induced 5-cycle is the boundary of a wheel of K.

Then K is contractible.

In the proof, we will use the following.

Lemma 4.2 ([5, Lem 8.11]). Let K be as in Lemma 4.1. Then for any pair of
simplices of K with vertex sets A1, A2, there is a vertex a of K that is a neighbour
or equal to all of the elements of A1 ∪ A2.

Proof of Lemma 4.1. By Whitehead theorem, it suffices to show that any finite
subcomplex K ′ of K is contained in a contractible subcomplex K ′′ of K. We
consider all the subsets V0, . . . , Vn of the vertex set of K ′ that span a simplex of K.
Let M0 be the simplex spanned on V0. Using Lemma 4.2, we construct inductively
simplices M1, . . . ,Mn so that Mi ⊇ Mi−1 and Mi contains a vertex ai such that
Vi ∪{ai} spans a simplex. Let K ′′ be the span of the union of K ′ and Mn. Note that
K ′′ is flag and each maximal simplex of K ′′ intersects Mn. Then K ′′ is contractible
(see e.g. [5, Lem 8.13]). □

An induced subcomplex C of a simplicial complex K is 3-convex if for every
path abc with vertices a, c in C at distance 2 in K, we have that b also belongs to C.

Remark 4.3. Let K be as in Lemma 4.1. If C is a 3-convex subcomplex of K,
then K also satisfies the hypotheses of Lemma 4.1.

4.1. Downward links. In the entire subsection, we assume that X is a simply
connected, 7-located, locally 5-large simplicial complex.

We fix a basepoint vertex x of X. The ball Bn(x) (resp. the sphere Sn(x)) is the
subcomplex of X spanned by all the vertices at distance ≤ n (resp. = n) from x
in X1. Let n > 0 and let σ be a simplex contained in Sn(x). The link of σ is the
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intersection of the links of all the vertices of σ, treated as subcomplexes of X. The
intersection K(v) of the link of σ with Sn−1(x) is the downward link of v.

Our goal is to show that downward links satisfy the hypotheses of Lemma 4.1,
and so they are contractible. To start with, let σ = v be a vertex. Note that K(v)
satisfies Lemma 4.1(2) since X is locally 5-large.

From Proposition 3.2 it follows that K(v) satisfies Lemma 4.1(1), and more
generally:

Corollary 4.4. Let v1, v2 be vertices of K(v).
(i) If v1 and v2 are neighbours, then K(v1) intersects K(v2).
(ii) If v1 and v2 are not neighbours, then they have a common neighbour v′ in K(v)

such that there is an edge v′1v
′
2 with v′1 in K(v1v

′) and v′2 in K(v2v
′).

Proposition 4.5. Any induced 5-cycle in K(v) is the boundary of a wheel in K(v).

Proof. Let γ = v2w2w1v1u be an induced 5-cycle in K(v). Let v′, v′1, v
′
2 be as in

Corollary 4.4(ii). If v′ is a neighbour of w1 or w2, then, since K(v) is 5-large, we
have that (v′, γ) is the required wheel. Otherwise, W1 = (v, v2w2w1v1v

′) is a 5-wheel.
Since W2 = (v′, v2v

′
2v

′
1v1v) is also a 5-wheel, (W1,W2) is a (5, 5)-dwheel, and so all

the vertices of W1 ∪W2 have a common neighbour y of X. Since y is a neighbour of
both v and v1, we have that y is a vertex of K(v). Since K(v) is 5-large, considering
the cycle v1uv2y we obtain that y is also a neighbour of u. Thus (y, γ) is the required
wheel.

□

Corollary 4.6. Each K(v) satisfies the hypotheses of Lemma 4.1, and so it is
contractible.

Proposition 4.7. Let n > 0, and let σ be a simplex of Sn(x). Then K(σ) is
nonempty.

Proof. Suppose first that σ is an edge of Sn(x) with vertices v1 and v2. We may
obtain a new complex X ′ by artificially adding to X a vertex v and a triangle vv1v2.
This does not affect local 5-largeness or 7-location, so the proposition follows from
Corollary 4.4(i) applied to v in X ′.

Now suppose dim(σ) > 1. We fix two distinct vertices v and y of σ. Let σ′ be the
subsimplex of σ spanned on all the vertices except for y, and let e = vy. By induction,
we have vertices v1 in K(σ′) and v2 in K(e). If neither v1 nor v2 lie in K(σ), then
there is u ̸= v in σ′ that is not a neighbour of v2, and y is not a neighbour of v1. By
the 5-largeness of the link of v, the vertex v1 is not a neighbour of v2. Let v′, v′1, v

′
2

be the vertices from Corollary 4.4(ii). Note that if v′ is a neighbour of y, then by
the 5-largeness of the link of v it lies in K(σ′). Thus we can assume that v′ is not a
neighbour of y and so W1 = (v, v2yuv1v

′) is a 5-wheel. Since W2 = (v′, v2v
′
2v

′
1v1v) is

also a 5-wheel, (W1,W2) is a (5, 5)-dwheel, and so all the vertices of W1 ∪W2 have a
common neighbour z, which lies in K(v). By the 5-largeness of the link of v, the
vertex z lies in K(σ′).

□

Lemma 4.8. Let n > 0, and let σ be a simplex of Sn(x). Then for any vertex v
of σ, the complex K(σ) is a 3-convex subcomplex of K(v).

Before the proof, let us note that from Lemma 4.8, Remark 4.3, Lemma 4.1,
Corollary 4.6, and Proposition 4.7, we deduce:
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Corollary 4.9. Each K(σ) is contractible.

Proof of Lemma 4.8. Let abc be a path in K(v) with a, c in K(σ) at distance 2
in K(v). Let y be any vertex of σ distinct from v. Applying the 5-largeness of the
link of v to the cycle abcy, we obtain that b is a neighbour of y. Since this holds for
each y, we have that b belongs to K(σ), as desired.

□

Proof of the Main Theorem. Let X be a 7-located locally 5-large simplicial complex.
By passing to the universal cover of X, we can assume that X is simply connected.
It suffices to prove that each Bn(x) is contractible. To do this, it suffices to show
that for each finite induced subcomplex A of Sn(x), the span A0 of A ∪ Bn−1(x)
deformation retracts to Bn−1(x). To this end, we order the simplices of A in the order
of nonincreasing dimension σ1, σ2, . . . , σk. Let Ai be the (not necessarily induced)
subcomplex obtained from Ai−1 by removing the open star of σi. Each such star is
the join of σi with K(σi), and so by Corollary 4.9, the complex Ai−1 deformation
retracts to Ai. Consequently, A0 deformation retracts to Ak = Bn−1(x). □
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