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Abstract. The 2-dimensional Shephard groups are quotients of 2-dimensional

Artin groups by powers of standard generators. We show that such a quotient
is not CAT(0) if the powers taken are sufficiently large. However, for a given
2-dimensional Shephard group, we construct a CAT(0) piecewise Euclidean cell

complex with a cocompact action (analogous to the Deligne complex for an
Artin group) that allows us to determine other non-positive curvature proper-
ties. Namely, we show the 2-dimensional Shephard groups are acylindrically
hyperbolic (which was known for 2-dimensional Artin groups), and relatively
hyperbolic (which most Artin groups are known not to be). As an application,

we show that a broad class of 2-dimensional Artin groups are residually finite.

1. Introduction

Shephard groups (named for G.C. Shephard [She52]) are specific quotients of
Artin groups and include, for example, the Coxeter groups and graph products of
cyclic groups as special cases. In a previous paper [Gol23], the author identified a
specific class of Shephard groups which exhibit Coxeter-like behavior, and proved
that these are CAT(0). However, the Shephard groups form a very broad class,
and because of this, we can find examples which exhibit behavior that diverges
quite a bit from the intuition that Coxeter groups and Artin groups provide. The
motivating criteria in [Gol23] can be roughly summarized by saying that the finite
parabolic subgroups are identical to the finite parabolic subgroups of the “associated”
Coxeter group. This class is rather inflexible, though; there are only so many finite
Shephard groups that are not finite Coxeter groups. Our main motivation, then, is
to begin the study of Shephard groups which do not satisfy this criteria. That is to
say, to study those Shephard groups which possess some infinite parabolic subgroup
whose associated Coxeter group is finite.

It turns out that such groups are quite fascinating even in the 2-generator (or
“dihedral”) case, and possess a rather interesting geometry which deviates from the
Artin and Coxeter groups. These dihedral groups will be one of the main focuses of
the current article. The other main focus are the 2-dimensional Shephard groups.
These are the Shephard groups which can be reasonably said to be “built-up” out
of their dihedral subgroups. From our results on 2-generator Shephard groups, we
derive interesting information about the geometry of the 2-dimensional Shephard
groups, some known for Artin groups, some different than Artin groups, and some
which can be used to show new properties of Artin groups. The full definitions and
statements are as follows.

Let Γ be a simplicial graph with vertices i labeled by pi ∈ Z≥2 ∪ {∞} and

edges {i, j} labeled by mij ∈ Z≥2. If mij is odd then we require pi = pj . We call

Γ an extended (or Shephard) presentation graph. The Shephard group ShΓ with
1
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presentation graph Γ is

ShΓ =

〈
V (Γ)

∣∣∣∣ prod(i, j;mij) = prod(j, i;mij) if {i, j} ∈ E(Γ)
ipi = 1 if pi <∞

〉
,

where prod(a, b;m) denotes (ab)m/2 if m is even and (ab)(m−1)/2a if m is odd. If

Γ =
q

p r is a single edge, then we will write ShΓ = Sh(p, q, r) and call this an
edge (Shephard) group or a dihedral Shephard group.

If Γ is an extended presentation graph and p ∈ Z≥2 ∪ {∞}, we denote by Γ(p)
the extended presentation graph obtained from Γ by replacing all pi with p. In
particular, for any extended presentation graph Γ, we define

WΓ = ShΓ(2)

AΓ = ShΓ(∞),

which are the Coxeter group and Artin group, resp., associated to Γ. Thus we
see that every Shephard group is a quotient of an Artin group by some powers of
standard generators.

Assumption. In the rest of the paper, “extended presentation graph” will be
taken to mean “extended presentation graph with all pi finite” (so the kernel of
AΓ → ShΓ contains powers of every generator), unless we explicitly mention Γ(∞),
and “Shephard group” will mean “Shephard group with all finite-order generators”.

We write Λ ≤ Γ if Λ is a full subgraph of Γ and inherits the edge and vertex
labels of Γ. (A full or “induced” subgraph Λ of Γ is one where if v, w ∈ V (Λ) and
{v, w} ∈ E(Γ), then {v, w} ∈ E(Λ).) Then Λ is also an extended presentation graph
and thus determines a Shephard group ShΛ, a Coxeter group WΛ, and an Artin
group AΛ. If WΛ is finite, then we will call each of Λ, ShΛ, and AΛ “spherical-type”.
(Similarly, if WΓ is word hyperbolic, then we will call each of Γ, ShΓ, and AΓ

“hyperbolic-type”.) A property of an extended presentation graph Γ commonly of
interest for Artin groups and Coxeter groups is

(2D) For all spherical-type Λ ≤ Γ, |V (Λ)| ≤ 2.

If a graph Γ satisfies (2D), we will call Γ 2-dimensional. Much of the behavior of
2-dimensional Shephard groups can be deduced from their dihedral subgroups. Our
first main result concerns solely these dihedral Shephard groups.

Theorem A. Let (p, q, r) be a triple of integers each ≥ 2, with p = r if q is odd,
and let h = 1/p+ 2/q + 1/r. If h ≤ 1, then Sh(p, q, r) cannot admit a proper action
by semi-simple isometries on any CAT(0) space. In particular, Sh(p, q, r) is not
CAT(0). Moreover,

(1) If h = 1, Sh(p, q, r) is commensurable to the 3-dimensional integer Heisenberg
group; in particular, it is virtually nilpotent and not semihyperbolic.

(2) If h < 1, Sh(p, q, r) is commensurable to the “universal central extension”

of a hyperbolic surface group, is a uniform lattice in Isom(S̃L2R), and is
biautomatic.

In particular, Sh(p, q, r) is linear, and if an element of Sh(p, q, r) has finite order, it
is conjugate to a power of one of the standard generators.

Not mentioned is the case 1/p+ 2/q + 1/r > 1; this is because if this holds, then
Sh(p, q, r) is finite (and is handled in [Gol23]). In other words, 1/p+ 2/q + 1/r ≤ 1
if and only if Sh(p, q, r) is infinite. The fact that finite dihedral Shephard groups
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are linear is shown in [Cox75]; hence, the above Theorem also implies all dihedral
Shephard groups are linear.

Example. The braid group on three strands Sh(∞, 3,∞) is known to be CAT(0)
(e.g., in [BM10]), but its quotient Sh(p, 3, p) is not CAT(0) when p ≥ 6 (when p < 6,
this quotient is finite).

The broadest class of Shephard groups to which Theorem A applies are described
in the following.

Corollary. Let Γ be an extended presentation graph (possibly with infinite vertex
labels) with an edge e = {i, j} such that

(1) the parabolic She generated by e embeds1 in ShΓ,
(2) the edge and vertex labels of e are finite, and
(3) She is infinite

Then ShΓ cannot admit a proper action on a CAT(0) space by semi-simple isometries.
In particular, ShΓ is not CAT(0). Moreover, 1/pi + 2/mij + 1/pj = 1, then ShΓ is
not semihyperbolic.

To rephrase this corollary, an embedded infinite edge subgroup with all labels
finite is a “poison subgroup” for being CAT(0), or even semihyperbolic in some cases.
It is a conjecture that given any extended presentation graph, its edge parabolics
embed, so, conjecturally, (1) is unnecessary and infinite edge groups with finite
labels are always poison subgroups. But, as a consequence of the upcoming Theorem
B, the edge groups of a 2-dimensional presentation graph always embed, so we can
say

Corollary. Let Γ be a 2-dimensional extended presentation graph with an edge
e = {i, j} such that pi < ∞, pj < ∞, mij < ∞, and 1

pi
+ 2

mij
+ 1

pj
≤ 1. Then

ShΓ cannot admit a proper action by semi-simple isometries on a CAT(0) space,
and in particular is not CAT(0). Moreover, if 1

pi
+ 2

mij
+ 1

pj
= 1, then ShΓ is not

semihyperbolic.

Example. Suppose Γ is an XXL-type presentation graph (meaning all edge labels
are ≥ 5); in particular Γ is 2-dimensional. Then AΓ is CAT(0) [Hae22]. However
there is some N such that the quotient ShΓ(p) is not CAT(0) for all p ≥ N .

In light of these examples, Theorem A may seem perplexing. Perhaps it is less
surprising when one considers that the CAT(0) condition requires non-positive
curvature at all scales, and we are able to show that (most of) these groups possess
other, less restrictive non-positive curvature properties.

Theorem B. If Γ is any 2-dimensional extended presentation graph, then its edge
groups embed, and ShΓ acts cocompactly on a piecewise Euclidean CAT(0) cell
complex with cell stabilizers the conjugates of ShΛ for spherical-type Λ ≤ Γ.

This complex is the Shephard group analogue of the Deligne complex for Artin
groups and the Davis-Moussong complex for Coxeter groups. We give the full
definition and proof of Theorem B in Section 5. This allows one to adapt techniques
used for 2-dimensional Artin groups to show similar properties of 2-dimensional

1Meaning She is isomorphic to the subgroup ⟨V (e)⟩ of ShΓ via the map induced by the inclusion
e ↪→ Γ on generators.
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Shephard groups. As an example, the next Theorem is based on the analogous
result for 2-dimensional Artin groups [Vas22].

Theorem C. Suppose Γ is an extended presentation graph satisfying

(1) |V (Γ)| ≥ 3,
(2) Γ is 2-dimensional,
(3) ShΓ does not split as a direct product (i.e., it is irreducible), and
(4) every connected component of Γ has an edge e such that She is infinite.

Then ShΓ is acylindrically hyperbolic.

Past adapting proofs from 2-dimensional Artin groups, the condition that the
vertex labels of Γ are finite allows us to show novel results, that were either unknown
or untrue for Artin groups. Our primary example is:

Theorem D. Suppose Γ is a hyperbolic-type, 2-dimensional extended presentation
graph, and let P = { ShΛ : |V (Λ)| = 2, WΛ finite, ShΛ infinite }, the collection of
spherical-type edges of Γ which give rise to infinite Shephard groups. Then (ShΓ,P)
is a relatively hyperbolic group pair. In particular, if every edge group ShΛ is finite,
then ShΓ is hyperbolic.

The fact that the stabilizers of the CAT(0) cell complex from Theorem B are
precisely the edge (and vertex) subgroups indicate that in some sense, the poison
subgroups are the only obstruction to being non-positively curved. The above
theorem makes this idea more rigorous.

This Theorem is notable, because Artin groups are rarely hyperbolic relative to
spherical-type subgroups; see [KS04] for a discussion on why this is. However, it was
shown in [CC07] that Theorem D holds for Artin groups if relative hyperbolicity
is replaced with “weak relative hyperbolicity” (which we will not define here).
Upgrading this to relative hyperbolicity has the following noteworthy consequences:

Corollary E. Suppose Γ is a hyperbolic-type 2-dimensional extended presentation
graph. Then ShΓ

(1) has solvable word problem,
(2) satisfies the Tits alternative,
(3) has finite asymptotic dimension, and
(4) has the rapid decay property.

If, in addition, there is no edge {i, j} of Γ with 1/pi + 2/mij + 1/pj = 1, then ShΓ
is biautomatic.

If we restrict ourselves slightly further, it turns out we also have the following
very desirable property for a large subclass of 2-dimensional Shephard groups.

Corollary F. Suppose Γ is an extended presentation graph with no 3-cycle (or is
“triangle-free”) and no 4-cycle whose edges are each labeled 2. Then ShΓ is residually
finite.

These are precisely the 2-dimensional graphs Γ such that Γ is hyperbolic-type
and “type FC” (the spherical-type subgraphs are exactly the complete subgraphs).

One of the more broadly appealing aspects of Shephard groups with finite vertex
labels are their potential to be used to prove results for Artin groups. For example,
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Theorem G. Suppose Γ is a triangle-free presentation graph with no 4-cycle with
all edges labeled 2. Then AΓ is residually finite.

Residual finiteness is unknown for most Artin groups, and was previously unknown
even for most 2-dimensional Artin groups. For a discussion on residual finiteness of
Artin groups, including some past results see [Jan22].

1.1. Organization of paper. In Section 2 we recall the relationship between
central extensions and cohomology in preparation for Theorem A. Then in Section
3 we complete the proof of this Theorem by detailing the geometry of the dihedral
Shephard groups through the perspective of central extensions. In Section 4, we
prove the main technical lemma which implies Theorem B, namely that the dihedral
Shephard groups satisfy a “syllable length” condition similar to that enjoyed by
dihedral Artin groups. Following this, we construct the complex from and complete
the proof of Theorem B in Section 5. The consequences of this complex being
CAT(0) are discussed in the remaining sections: Section 6 deals with acylindrical
hyperbolicity, Section 7 deals with relative hyperbolicity and its consequences, and
Section 8 deals with residual finiteness of the related Artin groups.

Acknowledgements. The author would like to thank Mike Davis, Jingyin Huang,
and Piotr Przytycki for their valuable discussions and input. This work is partially
supported by NSF grant DMS-2402105.

2. Central Extensions

We begin by recalling some background on central extensions of groups and how
they relate to cohomology. Recall that if A is abelian, an (A-)central extension of a

group G is a group G̃ fitting into a short exact sequence

0 A G̃ G 0,

with the image of A contained in the center of G̃. If G̃1 and G̃2 are A-central
extensions of G, then we say they are (A-)equivalent if there is an isomorphism

f : G̃1 → G̃2 making the diagram

G̃1

0 A G 0

G̃2

f

commute.

Notation 2.1. For an arbitrary group G, we will denote its identity element by e.
For an abelian group A, we will denote its identity element by 0, and if it is cyclic,
we will let 1 denote a generator.

Let E(G,A) denote the set of equivalence classes of A-central extensions of G
under A-equivalence. It is well known that there is a natural abelian group structure
on E(G,A), under which E(G,A) ∼= H2(G;A) (for example, see [Bro82, Thm. 3.12]
or [DK18, §5.9.6]). There is a natural way to view the map H2(G;A) → E(G,A).
Fix a presentation G = ⟨S | R ⟩ and let Y be a K(G, 1) such that the 2-skeleton
Y 2 is the presentation complex for the given presentation of G. Let Ci be the free
abelian group on the i-cells of Y . Then in particular, the generators of C1 are S and
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the generators of C2 are R. Let di : Ci → Ci−1 be the standard cellular boundary
map, and define Zi = ker(di) and Bi = im(di+1), so that Hi(G) = Zi/Bi. We
then dualize to obtain Ci = Hom(Ci, A), d

i : Ci → Ci+1 defined by φ 7→ φ ◦ di+1,
Zi = ker(di), Bi = im(di−1), and Hn(G;A) = Zi/Bi.

Now choose a class [φ] ∈ H2(G;A) = Z2/B2 and a representative φ ∈ Z2 ⊆
Hom(C2, A) (or in other words, some morphism φ from the free abelian group on R

to A). Suppose A = ⟨T | Q ⟩ is a presentation for A. Let R̃ = { r−1φ(r) : r ∈ R }
and C = { [s, t] : s ∈ S, t ∈ T }, subsets of the free group on the disjoint union S⨿T .
We then define a group

Gφ = ⟨S ⨿ T | R̃ ⨿Q⨿ C ⟩. (2.1)

It is straightforward to see that the map [φ] → Gφ is a well-defined injective
homomorphism from H2(G;A) to E(G,A). The construction of an inverse to this
map is standard and unnecessary for our purposes, so we omit it, but it may be
found in [DK18, §5.9.6]. We will call [φ] the Euler class of Gφ, and denote it by
e(Gφ) = [φ].

One standard result is

Proposition 2.2. The underlying set of Gφ is in bijection with A×G, but Gφ is
isomorphic to A×G as a group if and only if [φ] = 0 in H2(G;A).

We are interested in group-theoretic properties of central extensions induced by
cohomological properties of their Euler classes. One first step in this direction is
provided by this Lemma:

Lemma 2.3. Suppose G̃ and H̃ are A-central extensions of a group G such that
e(H̃) = ne(G̃), where n is not a zero divisor of the Z-module A. Then H̃ is

isomorphic to a subgroup of G̃ with index [A : nA].

Proof. Let [ψ] = e(H̃) and [φ] = e(G̃) with representatives ψ and φ, resp., chosen

such that ψ = nφ. We will write Gψ ∼= H̃ and Gφ ∼= G̃, using the notation given
above for the presentation of Gψ and Gφ.

Define a map Ψ : Gψ → Gφ by Ψ(s) = s for s ∈ S and Ψ(t) = nt for t ∈ T . To
check that this is a well-defined homomorphism we need to verify that Ψ(r) = e for

all r ∈ R̃ ⨿Q⨿ T . This is immediate for r ∈ Q or r ∈ C, so we only need to verify
this for r ∈ R̃; that is, we must verify that Ψ(r) = φ(Ψ(r)) for all r ∈ R. But this
is also immediate since

Ψ(r) = r (r is a word in S)

= φ(r)

= nψ(r)

= Ψ(ψ(r)). (ψ(r) is a word in T )

Thus this map is a well-defined homomorphism. Since n is not a zero divisor, it is
also injective. It is clear from the definition of Ψ that its image has index [A : nA]
in Gφ. □

Now consider a group homomorphism f : H → G. This induces in a standard
way a morphism f∗ : H2(G;A) → H2(H;A) on cohomology and thus a map
f∗ : E(G,A) → E(H,A) on central extensions via Gφ 7→ Hf∗φ. In addition, f can
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be lifted to a morphism fφ : Hf∗φ → Gφ. This gives the commutative diagram

Hf∗φ Gφ

H G

fφ

f

As a consequence of the above diagram commuting, we have:

Lemma 2.4. For all [φ] ∈ H2(G;A), [Gφ : fφ(Hf∗φ)] = [G : f(H)]. In particular,
if f(H) has finite index in G, then fφ(Hf∗φ) has finite index in Gφ.

Proof. Denote the rightmost vertical morphism of the diagram by Φ : Gφ → G.
Then fφ(Hf∗φ) ∼= Φ−1(f(H)). Since Gφ = Φ−1(G) and Φ is a surjective morphism,
it follows that [Gφ : fφ(Hf∗φ)] = [Φ−1(G) : Φ−1(f(H))] = [G : f(H)]. □

It is a standard fact that if f is injective, so is fφ [DK18, Ex. 5.140.3], so in

particular, if H is a finite index subgroup of G, then for any central extension G̃
of G, there is a finite index subgroup H̃ which is a central extension of H over the
same central copy of A.

We also know:

Proposition 2.5. [Hat02, §3.G] If n = [G : f(H)], then ker(f∗) consists only of
elements whose order divides n.

In particular, f∗ is always injective on the free part of H2(G;A).
This leads us to:

Proposition 2.6. Suppose G is finitely generated and A ∼= Zn for some n. If G̃
is an A-central extension of G such that e(G̃) has infinite order, then G̃ cannot

act properly by semi-simple isometries on a CAT(0) space. In particular G̃ is not
CAT(0).

Proof. We want to utilize [BH13, Thm. II.6.12], which states that if a finitely
generated group K acts by isometries on a CAT(0) space, and if K contains a
central copy of Zd which acts faithfully by hyperbolic isometries (save for the
identity), then this copy of Zd is virtually a direct factor of K.

To apply this to our situation, let H̃ be a finite index subgroup of G̃ containing
the canonical copy of A ∼= Zn contained in Z(G̃). We claim that there is no subgroup

H ′ of H̃ such that H̃ ∼= H ′×A. In order for such a subgroup to exist, we must have
A ⊆ Z(H̃). But then H = H̃/A is a subgroup of G, and since H̃ has finite index

in G̃, we know H has finite index in G. In particular, if ι : H → G denotes the
inclusion morphism, then Proposition 2.5 tells us that e(H̃) = ι∗e(G̃) is nontrivial

in H2(H;A) since e(G̃) has infinite order. Since this class is non-trivial, H̃ does not
split as a direct product by Proposition 2.2.

By [BH13, Thm. II.6.12], we conclude that if G̃ acts by semi-simple isometries

on a CAT(0) space X, then the central copy of A in G̃ cannot act faithfully by
hyperbolic isometries. If the action is not faithful, then since A ∼= Zn the action
cannot be proper. So assume the action is not by hyperbolic isometries, meaning
A contains some non-trivial elliptic isometry γ of X (parabolic isometries are not
semi-simple). Since A ∼= Zn, we know ⟨γ⟩ ∼= Z. Since γ is elliptic, then ⟨γ⟩ ∼= Z
fixes a point of X, and hence does not act properly.
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The fact that G̃ cannot be CAT(0) follows from [BH13, Prop. II.6.10(2)]. (Recall
that a group is CAT(0) if it acts properly and cocompactly by isometries on a
CAT(0) space.) □

2.1. Central products. For some later results, it becomes useful to use a commu-
tative version of the amalgamated product.

Definition 2.7. Let G1, G2, and Z be any groups equipped with injective homo-
morphisms θi : Z → Z(Gi). Let N = { (θ1(z), θ2(z)−1) : z ∈ Z } ≤ G1 × G2. We
define the amalgamated direct product or central product of G1 and G2 over Z by

G1 ×Z G2 := (G1 ×G2)/N

Note that N is a central subgroup of G1 ×G2, so this construction always gives
a well-defined group.

Take subgroups Hi of Gi and let N ′ = (H1 × H2) ∩ N and Z ′ = θ−1
1 (H1) ∩

θ−1
2 (H2) ⊆ Z. Note that N ′ = { (θ1(z), θ2(z)−1) : z ∈ Z ′ }. By the isomorphism
theorems,

H1 ×Z′ H2 = (H1 ×H2)/N
′ ∼= (H1 ×H2)N/N ≤ (G1 ×G2)/N.

This demonstrates H1 ×Z′ H2 as a natural subgroup of G1 ×Z G2. By the stan-
dard proof of the isomorphism theorems, the map that realizes this inclusion is
(h1, h2)N

′ 7→ (h1, h2)N . In addition, one readily sees that if Hi is finite index in Gi
(i = 1, 2), then H1 ×Z′ H2 is finite index in G1 ×Z G2.

As a special case, we can take H1 = G1 and H2 = {idG2
}, in which case Z ′ =

{idZ} (or similarly, H1 = {idG1
} and H2 = G2). It is clear that G1

∼= G1×Z′ {idG2
}

via the map g 7→ (g, idG2
), since Z ′ is trivial. We then apply our previous remarks

to this situation to obtain

Proposition 2.8. For any groups Gi and Z as above, the groups G1 and G2

embed into G1 ×Z G2 via the maps ϵ1 : g 7→ (g, idG2
)N and ϵ2 : g 7→ (idG1

, g)N ,
respectively.

Just as one has the notion of internal direct product, we may define an internal
central product.

Proposition 2.9. Suppose G is any group with subgroups H1, H2 such that h1h2 =
h2h1 for all hi ∈ Hi (i = 1, 2). Let Z = H1 ∩H2. Then H1H2 ≤ G is isomorphic
to H1 ×Z H2.

Proof. First note that since the elements of H1 and the elements of H2 commute,
Z ⊆ Z(Hi) for i = 1, 2. Let ιi : Z → Hi (i = 1, 2) denote the inclusion map.
Let α : H1 × H2 → G be given by (h1, h2) 7→ h1h2. Clearly α is a surjective
homomorphism. The kernel of α is { (h1, h2) : h1 = h−1

2 }, or rewritten,

{ (h1, h−1
2 ) : h1 = h2, hi ∈ Hi } = { (ι1(h), ι2(h)−1) : h ∈ H1 ∩H2 = Z }.

Thus
H1H2

∼= (H1 ×H2)/ker(α) ∼= H1 ×Z H2. □

We need one final property of central products before we can continue.

Proposition 2.10. Take Gi and Z as above, and identify Gi with the subgroup of
G1 ×Z G2 as in Proposition 2.9. Then [G1 ×Z G2 : G1] = [G2 : Z] (and similarly,
[G1 ×Z G2 : G2] = [G1 : Z]).
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This follows immediately from Proposition 2.9 and standard counting results
([G1G2 : G1] = [G2 : G1 ∩G2] = [G2 : Z]).

3. Dihedral Shephard groups

The goal of this section is to study the geometry of the infinite dihedral Shephard
groups in detail. We display them as Z-central extensions of infinite triangle groups
whose Euler class has infinite order, proving the first statement of Theorem A.
Following this, we determine finer properties which we believe are interesting in
their own right (and in particular complete the proof of Theorem A).

3.1. Dihedral Shephard groups as central extensions. We start by examining
the second integral cohomology of the triangle groups. Let (p, q, r) be a triple of
positive integers, and define h = 1

p + 1
q +

1
r . We let Y = S,E, or H when h > 1,

h = 1, or h < 1, respectively. Define a triangle T (p, q, r) in Y2 with vertices a, b, and
c, and angles π/p, π/q, π/r at a, b, and c, respectively. The triangle group ∆(p, q, r)
is the group generated by rotations of angle 2π/p, 2π/q, and 2π/r about the vertices
a, b, and c, resp., of T in Y2. (We note that sometimes ∆(p, q, r) is called a von
Dyck group and “triangle group” is sometimes used to refer to 3-generator Coxeter
groups.) This group has the well-known presentations

∆(p, q, r) = ⟨ a, b, c | ap = bq = cr = abc = e ⟩
= ⟨ a, c | ap = (ac)q = cr = e ⟩

where, by abusing notation, the generators a, b, and c correspond to the respective
aforementioned rotations about the vertices a, b, and c of T . We will use the second
presentation to compute the cohomology. Since we’re interested in only the second
integral cohomology, we describe a construction of the 3-skeleton of a K(∆, 1).

First let K(2) be the presentation complex for ∆(p, q, r); that is, the cell complex
with one 0-cell x, two (oriented) 1-cells labeled a and b, and three 2-cells labeled ea,
ec, and eac. The attaching map of the cell ea takes the boundary ∂ea to the loop
ap with positive orientation, and similarly ec and eac are attached to the loops cr

and (ac)q, respectively.

Let K̃(2) denote the universal cover of K(2). Note that K̃(2) is the Cayley 2-

complex of ∆(p, q, r) and the 1-skeleton of K̃(2) is the Cayley graph of ∆(p, q, r).
This Cayley graph is the 1-skeleton of the semiregular tiling T = T (p, 2q, r) of Y2

by p-gons, 2q-gons, and r-gons (e.g., [MS16]). See Figure 1 for an example. The cell

structure on K̃(2) is obtained from this tiling T by gluing (n− 1) extra cells to the
boundary of each n-gon.

We now obtain the cell complex K̃ by filling the generators of π2(K̃
(2)) as follows.

Choose an n-gon E of T , and label all cells attached to ∂E in K̃(2) (including E)

by E1, . . . , En. The cells Ei ∪ Ei+1 (with indices mod n) form a sphere in K̃(2), so
attach a 3-cell Ei,i+1 to this sphere. We will denote ES =

⋃
Ei,i+1. Notice that ES

is homeomorphic to a 3-sphere. We obtain K̃ from T by replacing each n-gon E

with the sphere ES . Notice that K̃ is the wedge of the spheres ES . In particular,

π2(K̃) = 0.

There is a natural action of ∆(p, q, r) on K̃ coming from the action on K̃(2) by
deck transformations. For an n-gon of T , The stabilizer of the set

⋃
Ei is conjugate

to exactly one of ⟨a⟩, ⟨ac⟩, or ⟨c⟩ (depending on if n = p, 2q, or r, respectively). The
action of this stabilizer on ES is simply the standard action of Z/nZ on S3. This
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Figure 1. The tiling T (3, 6, 4) whose 1-skeleton is the Cayley
graph of ∆(3, 3, 4) [Kal]

action is still free and properly discontinuous, so we may define the quotient space

K = K̃/∆ such that K̃ is the universal cover of K. Note that K(2) (as defined
before) is the 2-skeleton of K.

Since K̃ is the universal cover of K, we know π2(K) ∼= π2(K̃) = 0. This means
that H2(∆) ∼= H2(K) and H2(∆;Z) ∼= H2(K;Z), where ∆ = ∆(p, q, r). Note that

for any n-gon E of T , the cell Ei of K̃ maps to exactly one of the cells ea, eac, or

ec if n = p, 2q, or r, respectively. In particular, for all such E, the 3-cell ES in K̃
maps to a single 3-cell of K which we will denote fa, fac, and fc if n = p, 2q, or
r, resp. Topologically, ∂fg = eg ∪ g ∪ x if g = a or c, and ∂fac = eac ∪ a ∪ c ∪ x.
Moreover, the closure fg of fg is the 3-dimensional lens space of order |g| with its

standard cell structure for g = a, b and fac is the 3-dimensional lens space of order
q with two points identified at x.

To fix notation for the computation of the cohomology ofK, let Cn denote the free
abelian group on the n-cells ofK and dn : Cn → Cn−1 the standard cellular boundary
map. We then let Zn = ker(dn) and Bn = im(dn+1) so that Hn(K) = Zn/Bn. As
usual, we dualize to obtain Cn = Hom(Cn,Z), dn = (dn+1)∗ : Cn → Cn+1 given by
φ 7→ φ ◦ dn+1, Z

n = ker(dn), Bn = im(dn−1), so that Hn(K;Z) = Zn/Bn.
By a computation identical to that of the lens spaces (e.g., [Hat02, Ex. 2.43]), we

see that d3 is the zero map and

d2(ea) = pa

d2(ec) = rc

d2(eac) = q(a+ c)

This allows one to easily compute that B2 = 0 and Z2 (hence H2(K)) is infinite
cyclic generated by

lcm(p, q, r)

q
eac −

lcm(p, r)

p
ea −

lcm(p, r)

r
ec.
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Lemma 3.1. Define a map φ ∈ C2 by

φ(ea) = 0

φ(ec) = 0

φ(eac) = 1.

Then the class [φ] ∈ H2(K,Z) has infinite order.

Proof. Let ρ : Z2 → Z2/B2 denote the quotient map and R : C2 → Hom(Z2;Z)
denote the restriction map ψ 7→ ψ|Z2

.
The restriction φ|Z2

is nontrivial, and B2 = 0, so ρ ◦ R ◦ φ gives a nontrivial
element of Hom(H2;Z). By the universal coefficient theorem, the free part of
H2(K;Z) is isomorphic to Hom(H2;Z) via the map ψ 7→ ρ ◦R ◦ψ (where ψ is some
lift of ψ along the quotient map Z2 → Z2/B2), so it follows that the image of φ in
H2(K;Z) has infinite order. □

Lemma 3.2. Let φ be as above. Then Sh(p, 2q, r) ∼= ∆φ. In particular, Sh(p, 2q, r)
has infinite cyclic center generated by (st)q.

Proof. By the definition of ∆φ, we see that it has presentation

⟨ a, c, z | ap = cr = e, (ac)q = z, [z, a] = [z, c] = e ⟩.

Since z commutes with a and b,

z = a−1za = a−1(ac)qa = (ca)q,

so we just as well may write

⟨ a, c, z | ap = cr = e, (ac)q = (ca)q = z, [z, a] = [z, c] = e ⟩.

But then notice that

(ac)qa = a(ca)q = a(ac)q, and

c(ac)q = (ca)qc = (cb)qc,

so the relations [z, a] = [z, c] = 1 are now redundant, and we may write

⟨ a, c, z | ap = cr = e, (ac)q = (ca)q = z ⟩.

But now the generator z is redundant, so we arrive at

∆φ = ⟨ a, c | ap = cr = e, (ac)q = (ca)q ⟩ ∼= Sh(p, 2q, r).

Since (ac)q = z ∈ Z(∆φ) and ∆φ/⟨z⟩ ∼= ∆ is centerless (because h ≤ 1), it follows
that (ac)q = (st)q generates the center of Sh(p, 2q, r). □

Next, we examine the Shephard groups Sh(p, q, p) for q odd.

Lemma 3.3. The subgroup of Sh(p, 2q, 2) generated by s and tst is index-2 and
isomorphic to Sh(p, q, p).

Proof. First, we fix the presentations of these groups as

Sh(p, q, p) = ⟨σ, τ | σp = τp = e, στσ . . .︸ ︷︷ ︸
q letters

= τστ . . .︸ ︷︷ ︸
q letters

⟩

Sh(p, 2q, 2) = ⟨ s, t | sp = t2 = e, (st)q = (ts)q ⟩.
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Let the generator υ of Z/2Z act on Sh(p, q, p) by interchanging σ and τ . Then the
semidirect product of Sh(p, q, p) and Z/2Z under this action has the presentation

Sh(p, q, p)⋊ Z/2Z = ⟨σ, τ, υ | σp = τp = e, στσ . . .︸ ︷︷ ︸
q letters

= τστ . . .︸ ︷︷ ︸
q letters

, σ = υτυ, υ2 = e ⟩.

Since this is a semidirect product, the subgroup generated by σ and τ is isomorphic
to Sh(p, q, p). We claim this product is isomorphic to Sh(p, 2q, 2).

The relation σ = υτυ makes τp = e redundant, so we may remove it. In addition,
notice that

τστ . . .︸ ︷︷ ︸
q letters

= (τσ)(q−1)/2τ

= (υσυσ)(q−1)/2υσυ

= (υσ)(q−1)υσυ

= (υσ)qυ.

Similarly,

στσ . . .︸ ︷︷ ︸
q letters

= (στ)(q−1)/2σ

= (συσυ)(q−1)/2σ

= (συ)(q−1)σ.

Thus the relation στσ . . .︸ ︷︷ ︸
q letters

= τστ . . .︸ ︷︷ ︸
q letters

is equivalent to

(υσ)qυ = (συ)(q−1)σ,

which in turn is equivalent to

(υσ)q = (συ)(q−1)συ = (συ)q.

Therefore,

Sh(p, q, p)⋊ Z/2Z = ⟨σ, τ, υ | σp = υ2 = e, (υσ)q = (συ)q, σ = υτυ ⟩.
And with this presentation, τ is obviously redundant, so we see that

Sh(p, q, p)⋊ Z/2Z ∼= Sh(p, 2q, 2)

via the map σ 7→ s and υ 7→ t. □

Since Sh(p, q, p) viewed inside Sh(p, 2q, 2) is generated by σ = s and τ = tst, we
have that the element (στ)q = (st)2q is both in Z(Sh(p, 2q, 2)) and Z(Sh(p, q, p)),
since (st)2q = (stst)q = (στ)q. The image of Sh(p, q, p) under the quotient map
Sh(p, 2q, 2) → ∆(p, q, 2) is the subgroup D of ∆(p, q, 2) generated by a and cac.
This subgroup is finite index in ∆(p, q, 2) (e.g., since Sh(p, q, p) is finite index in
Sh(p, 2q, 2)). In particular,

Lemma 3.4. Sh(p, q, p) is a Z-central extension of D via the image of the class [φ]
from H2(∆;Z) to H2(D,Z) (which has infinite order).

Note that this restriction of [φ] has infinite order by Proposition 2.5.
As a brief aside, using this central extension structure, we can show

Corollary 3.5. Suppose Sh(p, q, r) is infinite and g ∈ Sh(p, q, r) has finite order.
Then g is conjugate to a power of one of the standard generators of Sh(p, q, r).
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Proof. Let s and t denote the generators of order p and r, resp., of Sh(p, q, r). The
central quotient Sh(p, q, r)/Z of Sh(p, q, r) acts properly and cocompactly on either
E2 or R2, where the generators s and t are sent to rotations a and c, resp., by an angle
of 2π/p and 2π/r, resp. Since g has finite order, it cannot be contained in the center
of Sh(p, q, r), and thus has non-trivial image g in Sh(p, q, r)/Z, still with finite order.
Then by standard facts about isometries of E2 and H2 (and in particular, facts about
the triangle groups), g is conjugate (within Sh(p, q, r)/Z) to a power of either a or c.

Without loss of generality, we may assume g = h
−1
akh for some h ∈ Sh(p, q, r)/Z

and 0 < k < p (the argument for conjugates of powers of c is identical). This means
there is some lift h ∈ Sh(p, q, r) of h such that gZ = (h−1skh)Z. In particular, there
is some z ∈ Z such that g = (h−1skh)z = h−1(zsk)h. If z ≠ e, then z has infinite
order, thus so does zsk (since z commutes with sk), contradicting the assumption
that g has finite order. Thus z = e and g = h−1skh. □

We now prove the first part of Theorem A, namely

Theorem 3.6. Let (p, q, r) be a triple of integers each ≥ 2, with p = r if q is odd.
If 1/p+ 2/q + 1/r ≤ 1, then Sh(p, q, r) cannot admit a proper action by semi-simple
isometries on any CAT(0) space. In particular, Sh(p, q, r) is not CAT(0).

Proof. First suppose q is even, say q = 2k for a positive integer k. Then

1

p
+

1

k
+

1

r
=

1

p
+

2

2k
+

1

r
=

1

p
+

2

q
+

1

r
≤ 1.

So by Lemma 3.2, Sh(p, q, r) = Sh(p, 2k, r) is a Z-central extension of the infinite
group ∆(p, k, r) via a second cohomology class (of infinite order by Lemma 3.1) of
∆(p, k, r). Thus by Proposition 2.6, Sh(p, q, r) cannot act properly by semi-simple
isometries on a CAT(0) space and is not CAT(0).

Now assume q is odd (implying p = r). This means

1 ≥ 1

p
+

2

q
+

1

r
=

2

p
+

2

q
,

implying
1

p
+

1

q
≤ 1

2
,

and so
1

p
+

1

q
+

1

2
≤ 1.

Thus Sh(p, q, p) is a Z-central extension of a finite index subgroup of ∆(p, q, 2) via
a second cohomology class of infinite order (Lemma 3.4). By Proposition 2.6 cannot
act properly by semi-simple isometries on a CAT(0) space and is not CAT(0). □

3.2. Further geometry of the extension. We can give insight into the geometry
of the dihedral Shephard groups beyond the general fact of Proposition 2.6. Namely,
we will discuss the remainder of Theorem A.

To encompass both types of dihedral Shephard groups dealt with above (depending
on the parity of q), we fix notation for this section. First, we let Sh = Sh(p, 2q, r)
or Sh = Sh(p, q, p) (in which case we say r = 2). In the first case, we define
D = ∆ = ∆(p, q, r), and in the second case, we define D to be the subgroup of
∆ = ∆(p, q, 2) generated by a and cac. To summarize the results of the previous
section in this notation, Sh is a Z-central extension of D whose Euler class has
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infinite order, where D acts geometrically on E2 or H2 if h = 1 or h < 1, resp., as a
finite index subgroup of a triangle group ∆.

As a consequence of the latter point, D contains a finite index torsion-free
subgroup M [Mil75, Thm. 2.7], and in particular M must be a (closed) surface
group. By Lemma 2.4, M lifts to a finite index subgroup Mφ of Sh. Since M is a

surface group, H2(M ;Z) ∼= Z. Let M̃ denote a central extension of M such that

e(M̃) is a generator of H2(M ;Z). (Sometimes M̃ is called the “universal central
extension” of M , although this conflicts with the standard definition of universal
central extension which applies only to perfect groups.) When h = 1, M ∼= Z2 and

M̃ ∼= H(3), the 3-dimensional integer Heisenberg group. When h < 1, then M is

a hyperbolic surface group, and M̃ is a uniform lattice in S̃L2R. Since e(M̃) is a

generator of the second cohomology, e(Mφ) is a non-zero multiple of e(M̃). By

Lemma 2.3, this means Mφ is finite index in M̃ . Thus Sh is commensurable to M̃ .
As an immediate consequence, we have

Proposition 3.7. For any triple (p, q, r) of integers ≥ 2 (with p = r when q is
odd), the group Sh(p, q, r) is linear.

Proof. When Sh(p, q, r) is finite, this was shown in [Cox75]. So, suppose Sh(p, q, r)
is not finite, i.e., h = 1/p+ 2/q + 1/r ≤ 1. It is an easy exercise to see that if H is
a finite index subgroup of G, then G is linear if and only if H is linear. Thus if two
groups G and H are commensurable, one is linear if and only if the other is. So

it suffices to note that M̃ is always linear: if h = 1, then M̃ is the 3-dimensional

integer Heisenberg group H(3) (well-known to be linear), and, if h < 1, then M̃ is

linear by [dLH00, §IV.48] (via an explicit injection from M̃ to SL2R ×H(3)). □

We will note here that the Shephard group analogue of the Tits representation
used to show finite Shephard groups are linear in [Cox75] is not faithful for infinite
dihedral Shephard groups. (A quick computation shows that the center of the image
under this representation is always finite.) Finding an explicit representation for
the Shephard groups is straightforward using the information given above, so we
leave it as an exercise. The h < 1 Shephard groups have an interesting explicit (but

non-linear) representation as isometries of S̃L2R, which will discuss soon. First we
examine the “Euclidean-like” case of h = 1.

Proposition 3.8. Suppose h = 1. Then Sh is virtually nilpotent and is not
semihyperbolic.

Proof. Virtual nilpotency of Sh follows from the Q.I. rigidity of virtual nilpo-
tency and the nilpotency of the 3-dimensional Heisenberg group. Moreover, the
3-dimensional Heisenberg group has cubic Dehn function, and thus so does Sh.
Since semihyperbolic groups have at-most quadratic Dehn function, it follows that
Sh cannot be semihyperbolic. □

This implies, for example, that if such a Shephard group embeds in an arbitrary
Shephard group ShΓ, then ShΓ is not semihyperbolic.

The case h < 1 is quite rich. For example, since the central quotient is word
hyperbolic in this case, by [NR97], this immediately implies

Proposition 3.9. If h < 1, then Sh is biautomatic.
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Past knowing that such a Shephard group is commensurable to a uniform lattice

in S̃L2R, we can also explicitly demonstrate it as a group of isometries of S̃L2R. In
some sense this is “more natural” than the linearity of Proposition 3.7, because
it directly generalizes the method in which the presentation for the finite dihedral
Shephard groups are derived in [Cox75, §9]. (The main technical difference is the
fact that 1/ lcm(p, q, r) ̸= 1/p+ 1/q + 1/r − 1 when 1/p+ 1/q + 1/r ≤ 1, unlike in
the finite case.)

Proposition 3.10. If h < 1, then Sh is a uniform lattice in Isom(S̃L2R).

Proof. Since h < 1 and each of p, q, and r are finite, we know that ∆, D, and
M are uniform lattices in G := PSL2R. Recall that G is isometric to the unit
tangent bundle of H2 (under the Sasaki metric), which itself can be thought of as a
U(1)-bundle over H2. This bundle is topologically trivial (since H2 is contractible)

but is well known to be metrically non-trivial. Let G̃ (= S̃L2R) denote the universal

cover of PSL2R. Then G̃ is a (metrically non-trivial) R-bundle over H2. Note that

M̃ (as defined above) is actually the preimage of M under the covering map G̃ → G .

Let ∆̃ denote the preimage of ∆ under this covering map. By [Mil75, Lem. 3.1] this
group has the presentation

∆̃ = ⟨ ã, b̃, c̃ | ãp = b̃q = c̃r = ãb̃c̃ ⟩,

where each of ã, b̃, and c̃ are lifts of the respective rotations a, b, and c to G̃ .

Moreover, the proof of said Lemma shows that ãb̃c̃ generates the center of G̃ and the

center of ∆̃. Note that ∆̃ is also a uniform lattice in G̃ since ∆ is a uniform lattice
in G . In order to display the dihedral Shephard groups as subgroups of Isom(G̃ ),
we introduce another class of isometries.

For θ ∈ R, define a map rθ which acts on G by preserving the U(1)-fiber structure
over H2, such that rθ projects down to the identity map of H2 and rotates each
fiber by 2πθ. Since the bundle is topologically trivial, there is no issue with the
existence and well-defined-ness of this map. Moreover, it is clear that this map is
an isometry for any θ. We can also see that each rθ commutes with the action of
G . The group of all rθ is isomorphic to U(1). Each rθ can be lifted to a map r̃θ
of G̃ which translates along the R-fibers a common distance 2πθ. Note that this

action commutes with the left action of G̃ . Since rθ is an isometry of G, it follows

that r̃θ is an isometry of G̃ . Let R = { r̃θ : θ ∈ R }. As a straightforward exercise,

one may verify that R along with the left-multiplication maps of G̃ generate the

entirety of Isom(G̃ ). Since the elements of R commute with the elements of G̃ (and

vice versa), this means Isom(G̃ ) = RG̃ . But note that G̃ ∩ R = { r̃θ : θ ∈ Z } ∼= Z;
so, by Proposition 2.9, Isom(G̃ ) ∼= G̃ ×Z R.

Now let k = lcm(p, q, r). Define ∆̃k to be the subgroup of Isom(G̃ ) generated by

ã, b̃, c̃, and z := r̃1/k. Since r̃1/k commutes with the left multiplication action of G̃ ,
this group has the presentation

∆̃k = ⟨ ã, b̃, c̃, z | ãp = b̃q = c̃r = ãb̃c̃ = zk, [ã, z] = [b̃, z] = [c̃, z] = e ⟩.

Note that this is isomorphic to a central product ∆̃×Z ⟨r̃1/k⟩. Since ∆̃ is a uniform

lattice in G̃ and ⟨r̃1/k⟩ is a uniform lattice in R, it follows easily that ∆̃k is a uniform

lattice in G̃ ×Z R ∼= Isom(G̃ ). We claim that Sh(p, 2q, r) is isomorphic to a finite
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index subgroup of ∆̃k, hence is a uniform lattice in Isom(G̃ ) as well. Since Sh(p, q, p)
is finite index in Sh(p, 2q, 2), the result follows for these groups as well.

Let m = k
p + k

q + k
r − k, and consider the group

G = ⟨ s, t, ϕ | sp = tr = e, (st)q = (ts)q = ϕ−qm, [s, ϕ] = [t, ϕ] = e ⟩. (3.1)

Since 1/p+ 1/q + 1/r = h ̸= 1, we know m ̸= 0. Then G is an amalgamated direct
product of Sh(p, 2q, r) and ⟨ϕ⟩ ∼= Z along the subgroup Z ∼= ⟨(st)q⟩ ∼= ⟨ϕ−qm⟩. By
Proposition 2.8, the subgroup of G generated by s and t is isomorphic to Sh(p, 2q, r),
and by Proposition 2.10, the index of this subgroup in G is [⟨ϕ⟩ : ⟨ϕm⟩] = m <∞.

We now show that G ∼= ∆̃k

We start by adding a redundant generator u = (ϕmts)−1 to G to obtain the
presentation

⟨ s, t, u, ϕ | sp = tr = e, (st)q = (ts)q = ϕ−qm, [s, ϕ] = [t, ϕ] = e, u = (ϕmts)−1 ⟩.

Define Φ : ∆̃k → G by

ã 7→ ϕk/ps

b̃ 7→ ϕk/qu

c̃ 7→ ϕk/rt

z 7→ ϕ,

then define Ψ : G→ ∆̃k by

s 7→ z−k/pã

u 7→ z−k/q b̃

t 7→ z−k/r c̃

ϕ 7→ z

We will show that Φ and Ψ define surjective homomorphisms. Once this is shown,
then clearly Φ and Ψ are mutually inverse, and thus the proof of the Proposition is
complete.

Starting with Φ, we must show

Φ(ã)p = Φ(b̃)q = Φ(c̃)r = Φ(ã)Φ(b̃)Φ(c̃) = Φ(z)k

and Φ(z) commutes with each of Φ(ã), Φ(b̃), and Φ(c̃). First, since Φ(z) = ϕ and ϕ
is in the center of G, the latter relation holds. We verify

Φ(ã)p = (ϕk/ps)p

= ϕksp

= ϕk

= Φ(z)k,
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with an identical result for Φ(c)r. Next,

Φ(b̃)q = (ϕk/qu)q

= ϕkuq

= ϕk(ϕmts)−q

= ϕkϕ−qm(ts)−q

= ϕk(ts)q(ts)−q

= Φ(z)k.

Last,

Φ(ã)Φ(b̃)Φ(c̃) = (ϕk/ps)(ϕk/qu)(ϕk/rt)

= ϕk/p+k/q+k/rsut

= ϕk/p+k/q+k/rs(ϕmts)−1t

= ϕk/p+k/q+k/r−mss−1t−1t

= ϕk/p+k/q+k/r−(k/p+k/q+k/r−k)

= ϕk

= Φ(z)k.

In order to show Ψ is a surjective morphism, we must show

Ψ(s)p = Ψ(t)r = e,

(Ψ(s)Ψ(t))q = (Ψ(t)Ψ(s))q = Ψ(ϕ)−qm,

Ψ(u) = (Ψ(ϕ)mΨ(t)Ψ(s))−1,

and Ψ(ϕ) commutes with Ψ(s) and Ψ(t). Since Ψ(ϕ) = z, which is in the center of

∆̃k, this last relation is immediate. We begin by computing

Ψ(s)p = (z−k/pã)p

= z−kãp

= z−kzk

= e,

with an identical computation for Ψ(t)r. Before proceeding, we need a lemma

regarding the relations in ∆̃k:

Lemma. The relations ãb̃c̃ = b̃c̃ã = c̃ãb̃ hold in ∆̃k.

Proof (of Lemma). Since ãb̃c̃ = zk and z is in the center of ∆̃k, we have

b̃ = ã−1zk c̃−1 = zkã−1c̃−1 = ã−1c̃−1zk.

Solving each equation for zk gives zk = ãb̃c̃ = b̃c̃ã = c̃ãb̃. □

For notational convenience, let r1 = Ψ(s), r2 = Ψ(u), and r3 = Ψ(t). The above
lemma implies that r1r2r3 = r2r3r1 = r3r1r2, and in particular r2 commutes with
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the product r3r1. Moreover, we know r2 has order q, since (z−k/q b̃)q = z−k b̃q =
z−kzk = 1. Now,

(Ψ(s)Ψ(t))q = (r1r3)
q

= r1(r3r1)
qr−1

1

= r1r
q
2(r3r1)

qr−1
1

= r1(r2r3r1)
qr−1

1

= (r1r2r3)
q (∗)

= (r2r3r1)
q

= rq2(r3r1)
q

= (r3r1)
q

= (Ψ(t)Ψ(s))q

Moreover, using (∗) we compute

(Ψ(s)Ψ(t))q = (r1r2r3)
q

= (z−k/pãz−k/q b̃z−k/r c̃)q

= (z−k/p−k/q−k/rãb̃c̃)q

= (z−k/p−k/q−k/rzk)q

= (z−k/p−k/q−k/r+k)q

= (z−m)q

= z−mq

= Ψ(ϕ)−mq.

Last,

(Ψ(ϕ)mΨ(t)Ψ(s))−1 = [zm(z−k/r c̃)(z−k/pã)]−1

= zk/r+k/p−mã−1c̃−1

= zk−k/qã−1c̃−1

= z−k/qzkã−1c̃−1

= z−k/q(b̃c̃ã)ã−1c̃−1

= z−k/q b̃

= Ψ(u). □

4. The syllable length condition

We now turn our attention to proving Theorem B. To do this, we follow the
overarching idea used to show that the Deligne complex for a 2-dimensional Artin
group is CAT(0) [CD95]. The first step in this process is to show that certain words
have a minimal length. We make this precise now.

Definition 4.1. Let S be a finite set and W (S) the set of (finite) words in S ∪S−1.

If w ∈ W (S) with w = si11 . . . s
in
n (sj ∈ S, ij ∈ Z) is cyclically reduced, then we

define the syllable length of w with respect to S to be ℓ(w) = ℓS(w) = n.
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Definition 4.2. If G is a group with finite generating set S, and w ∈W (S), then
we denote by w ∈ G the image of w under the map induced by the obvious map
sending the word si11 . . . s

in
n in W (S) to the element si11 . . . s

in
n in G.

The main result of this section is the following proposition, which, as mentioned
before, is one of the key steps in showing the analogue of the Deligne complex for
Shephard groups is also CAT(0). It is based on a result of Appel and Schupp [AS83],
but requires a minor extra hypothesis in order to account for the torsion in the
generators.

Proposition 4.3. Consider the dihedral Shephard group Sh(p, q, r) (with p = r if
q is odd) on standard generating set S = {s, t} and identity element e. Suppose

w ∈W (S) has a cyclically reduced expression w = si11 . . . s
in
n , with ij ̸∈ Zpsj (where

ps = p and pt = r). If w = e, then ℓ(w) ≥ 2q.

We will first establish notation and some brief lemmas.

Definition 4.4. Let (p, q, r) be a triple of integers all ≥ 2 with p = r if q is odd.
Let Sh = Sh(p, q, r). If q is even, let D = D(p, q, r) = ∆(p, q/2, r), σ = a, and τ = c,
and if q is odd, let D = D(p, q, r) denote the subgroup of ∆(p, q, 2) generated by
σ = a and τ = cac. Define a simplicial graph D = D(p, q, r) whose vertices are the
cosets of ⟨σ⟩ and ⟨τ⟩ in D, with an edge between two vertices if the cosets have
non-trivial intersection.

Sometimes D is called a “(rank 2) coset geometry”. It is the quotient of the

complex Θ̂ = Θ̂(Sh(p, q, r)) by the center of Sh(p, q, r) (see Proposition 5.2).

Lemma 4.5. For any triple (p, q, r) (with p, q, r ≥ 2 and p = r if q is odd), the
complex D(p, q, r) is (the 1-skeleton of) a tiling of either E2 or H2 by q-gons.

Proof. The case when q is even is proven in [MS16], so assume q is odd and
D = ⟨a, cac⟩ ≤ ∆(p, q, 2). Note that the result holds for D(p, 2q, 2) (since 2q
is even and D(p, 2q, 2) = ∆(p, q, 2)) and D(p, q, r) is a finite index subgroup of
D(p, 2q, 2) (by definition). In particular, D(p, 2q, 2) is a subdivision of D(p, q, p);
the added vertices come from adding cosets of c, which correspond to midpoints
of edges of D(p, q, p). In particular, since D(p, 2q, 2) consists of 2q-gons and is the
first barycentric subdivision of D(p, q, p), it follows that D(p, q, p) is a tiling by
q-gons. □

The graph D(p, q, r) can be thought of as “collapsing” the polygons in the Cayley
graph of ∆ corresponding to the conjugates of the subgroups ⟨s⟩ and ⟨t⟩. For
example, the Cayley graph and coset geometry of ∆(3, 3, 3) (coming from Sh(3, 6, 3))
are shown in Figure 2. They are overlaid in Figure 3 to demonstrate how the
triangles induced by the orbit of s and t can be shrunken to their respective cosets
(where these cosets are given by solid and empty vertices, respectively).

We may now prove the main Proposition of this section. The argument is based
on one given in [Cri05, Lemma 39].

Proof (of Prop. 4.3). Let E denote the edge of Θ̂ coming from the intersection of

the cosets ⟨s⟩ and ⟨t⟩ in Sh. The word w gives rise to a path γ in Θ̂ which is the

concatenation E1E2 · · ·En of the edges Ej given by Ej = si11 s
i2
2 · · · sij−1

j−1Ej−1 and
E1 = E. Since ij is not a multiple of psj , every pair of consecutive edges in this
list are distinct. So, γ is a locally embedded closed loop, and in particular, the
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e

s

s2

t

t2

st

st2

sts
= tst
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sts2 tst2

(a)

⟨t⟩⟨s⟩

s⟨t⟩

st⟨s⟩

t⟨s⟩

ts⟨t⟩

(b)

Figure 2. The Cayley graph (a) and coset geometry (b) for ∆(3, 3, 3)

Figure 3. The Cayley graph (dashed) and coset geometry (solid)
of ∆(3, 3, 3) overlaid



2-DIMENSIONAL SHEPHARD GROUPS 21

edge length ℓ(γ) = n of γ is precisely the syllable length ℓ(w) of w. Without loss of
generality, we may assume that this loop is embedded; otherwise, we may repeat
the argument on embedded subloops. In addition, we may assume without loss of
generality that 0 < ij < psj by replacing ij with its remainder after division by

psj ; clearly this gives the same word in Sh and same path in Θ̂. In particular, this
assumption does not change the syllable length.

Let γ be the image of γ under the covering map Θ̂ → D induced by the central
quotient. This is still a closed loop in D, but now may no longer be embedded.
However, can find a subpath of γ which is an embedded closed loop. After repa-
rameterization, we write γ as the concatenation γ0γ1, with γ0 an embedded closed
loop in D and γ1 not necessarily embedded, possibly trivial. Let γ0 be the lift of

γ0 to Θ̂ contained in γ and let γ1 be the (possibly trivial) path in Θ̂ such that

γ = γ0γ1. Then γ0 and γ1 represent subwords of w of the form w0 = si11 s
i2
2 · · · sijj and

w1 = s
ij+1

j+1 s
ij+2

j+2 · · · sinn for some 1 ≤ j ≤ n. In particular, ℓ(w) = ℓ(γ) = ℓ(γ0)+ℓ(γ1).
Since γ0 is a non-trivial embedded loop in D, it must enclose at least one q-gon,

implying ℓ(γ0) = ℓ(γ0) ≥ q. We claim that γ1 is non-empty, or in other words,
that γ ≠ γ0. Since γ is closed, it suffices to show that γ0 is not a closed loop. If
we show this, then, since γ1 will be a (nontrivial) closed path in D, we can apply
the argument given for γ and γ0 to γ1 and a simple subpath of γ1 to show that
ℓ(γ1) ≥ q, and thus ℓ(w) ≥ ℓ(γ0) + ℓ(γ1) ≥ q + q = 2q, as claimed.

Showing that γ0 is not closed is equivalent to showing w0 ̸= e. If q is even, let
∆ = ∆(p, q/2, r) and if q is odd, let ∆ = ∆(p, q, 2) (so either D = ∆ or D is finite
index in ∆). Let K be the (3-skeleton of a) K(∆, 1) space defined in Section 3, with

universal cover K̃, and let C be the Cayley graph of Sh. Note that C is a covering

of K̃(1) (with K̃(1) the Cayley graph of ∆). The word w0 gives rise to a path in C in

the standard way, hence also a path ρ̃ in K̃(1) via the covering map C → K̃(1), and

a path ρ ∈ K(1) under the covering map K̃ → K. The path ρ induces a cycle ρ ∈ C1

(see Section 3 for notation). Since w0 represents the trivial word in ∆, [ρ] = 0. This
means ρ ∈ B1 = im(d2), so we may choose an element R ∈ C2 such that d2(R) = ρ,
say R = naea + ncec + naceac for some na, nc, nac ∈ Z. Since γ0 is simple and we
have assumed 0 < ij < psj , we know that ρ̃ is a simple loop, it must enclose at least

one cell of K̃(2) which maps to eac, and it must traverse the boundaries of each such
cell with a consistent (positive) orientation. This means that nac ̸= 0, so φ(R) ̸= 0.
Therefore w0 cannot be trivial in Sh(p, q, r) if q is even. If q is odd this shows that
w0 is not trivial in Sh(p, 2q, 2), but since D lifts to Sh(p, q, p) ≤ Sh(p, 2q, 2) and w0

lies in this subgroup by assumption, the result also holds for q odd. □

Example 4.6. We will give an illustrative example with the complexes D(p, q, r)

and Θ̂. (We use these over the Cayley graphs since the figures are much clearer,
but a similar conceptualization works for the Cayley graphs.)

Consider the two hexagons in D(3, 3, 3) highlighted in Figure 4(a). Figure 5(a)

shows lifts of these hexagons to the complex Θ̂ for the Shephard group Sh(3, 6, 3).
(The dashed lines show which vertices are identified under the covering map; they

are not part of Θ̂.) The entire preimage of a hexagon under the covering map is
a vertical column which resembles the universal cover of the circle with the cell
structure coming from the hexagon. Consider the path encircling these two hexagons

in D(3, 3, 3), shown in red in Figure 4(b). Its lift to Θ̂ is shown in Figure 5(b). The
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(a) (b)

Figure 4. Hexagons in D(3, 3, 3) and a path enclosing them

(a) (b)

Figure 5. Lifts to Θ̂ for Sh(3, 6, 3)

endpoints of this path are “distance 2” along the fiber of the base vertex. This
corresponds to the fact that the path encloses exactly two hexagons. One may
compare this to the usual description of the Cayley graph of the 3-dimensional
integer Heisenberg group H(3), the main difference being that the vertical dashed
lines would be actual edges of the Cayley graph of H(3). This also illustrates how

the center of Sh(p, q, r) acts on its complex Θ̂, since it acts by deck transformations;
it is a uniform “vertical translation” along the dashed lines in Figure 5 (the fibers
of the map to D(p, q, r)).
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5. A CAT(0) cell complex for 2-dimensional Shephard groups

In this section, we recall the definition of Θ(Γ) for an arbitrary extended presen-
tation graph Γ, which largely follows [Gol23, §3]. We then show that this complex
is CAT(0) when Γ is 2-dimensional.

Definition 5.1. Let Γ be any extended presentation graph. Define

SfΓ = {Λ ≤ Γ :WΛ is finite }.

Then let K = KΓ = |(SfΓ)′|, where (SfΓ)′ denotes the derived complex of SfΓ and

|(SfΓ)′| is its geometric realization. We will denote an n-simplex of K by

[Λ0 < Λ1 < · · · < Λn]

for a chain Λ0 < Λ1 < · · · < Λn with each Λi ∈ Sf . We note that the vertices are
indexed by elements of Sf ; we will let vΛ = [Λ] denote the vertex of K coming
from Λ. Define a complex of groups G = G(ShΓ,KΓ) over K by declaring the local
group at vΛ to be ShΛ and the edge maps to be the natural maps coming from the
inclusion of generators.

Next, define ∆ = ∆Γ to be a simplex whose vertices are labeled by the generators
V (Γ) of ShΓ. For Λ ⊆ Γ, let σΛ denote the face of ∆Γ spanned by the elements of

V (Λ). We define a complex of groups Ĝ = Ĝ(ShΓ,∆Γ) by declaring the local group

at the face σΛ to be the group ShΛ̂, where Λ̂ is the full subgraph of Γ generated by
the vertices V (Γ) \ V (Λ). The edge maps are the standard maps induced by the
inclusion of generating sets.

Note that G is a simple complex of groups. Hence by [BH13, Def. II.12.12],
the fundamental group of G is the direct limit over the edge maps; when Γ is
2-dimensional, this direct limit is clearly ShΓ. In general, neither complex of
groups is a priori developable. If G is developable, we will denote its development

Θ = Θ(Γ) = ΘΓ. If Ĝ is developable, we will denote its development Θ̂ = Θ̂(Γ) = Θ̂Γ.

For dihedral Shephard groups, it turns out that Θ̂ has a straightforward description.

Proposition 5.2. If Λ is the graph which is a single edge between vertices s and

t with all labels finite, then Ĝ(ShΛ,∆Λ) is developable, and Θ̂Λ can be described

as follows: the vertex set of Θ̂Λ are the cosets of ⟨s⟩ and ⟨t⟩ in ShΛ, and there is
an edge between two vertices if the corresponding cosets intersect nontrivially. In

particular, the center acts freely on Θ̂Λ.

Proof. The fact that Ĝ is developable follows from the characterizations of Sh(p, q, r)
given in Section 3. Namely, in each case the cyclic groups Z/pZ and Z/rZ embed as

the vertex groups. The statement regarding the vertices and edges of Θ̂ is identical
to Coxeter groups and Artin groups; e.g., [CD95, Proof of Lemma 4.3.2]. The center
acts freely because the stabilizers of vertices and edges are finite (they are conjugates
of ⟨s⟩ or ⟨t⟩ in the first case, and are trivial in the second), while the center has
infinite order. □

When G is developable, it too has a straightforward description.

Proposition 5.3. Let ShΓSfΓ = { gShΛ : Λ ∈ SfΓ }, ordered by inclusion. If

G(ShΓ,KΓ) is developable, then ΘΓ
∼= |(ShΓSfΓ)′|. In particular, the n-simplices of

ΘΓ correspond to (n+ 1)-chains g0ShΛ0
< · · · < gnShΛn

of cosets, and the action
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of ShΓ is just the left multiplication action. We will denote the simplex arising from
such a chain by

[g0ShΛ0 < · · · < gnShΛn ].

The stabilizer of this simplex is g−1
0 ShΛ0

g0.

With this description, for developable G it is clear that K embeds in ΘΓ as the
subcomplex consisting of simplices of the form [ShΛ0

,ShΛ1
, . . . ,ShΛn

]. This allows
one to easily see that K is a fundamental domain for the action of ShΛ on ΘΛ. In
particular, we may view the vertices vΛ as being in ΘΓ as well as K.

In order to show G is developable (under certain conditions), we show that it is
“nonpositively curved” in the following sense.

Lemma 5.4. [BH13, Thm. II.12.28] If H is a (simple) complex of groups over a
simply connected domain and the local development at each vertex is locally CAT(0),
then H is developable and has locally CAT(0) development.

It is clear that K is simply connected, since v∅ is a cone point. We will describe
the local development shortly. We begin with putting a metric on the fundamental
domain K.

Definition 5.5. For Λ ∈ Sf , let
Sf≥Λ = {Λ′ ∈ Sf : Λ′ ≥ Λ } FΛ = |(Sf≥Λ)

′|

Sf≤Λ = {Λ′ ∈ Sf : Λ′ ≤ Λ } F ∗
Λ = |(Sf≤Λ)

′|.

Notice that F ∗
Λ is combinatorially a cube whose faces are FΛ1

∩ F ∗
Λ2

where
Λ1 ⊆ Λ2 ⊆ Λ. So K itself has a cubical structure with faces FΛ1

∩ F ∗
Λ2

for

Λ1 ⊆ Λ2 ∈ Sf . This Proposition is a straightforward exercise:

Proposition 5.6. With the cubical cell structure above, F ∗
Λ is isomorphic to the cone

on the first barycentric subdivision ∆′
Λ of ∆Λ with cone point vΛ. The isomorphism

is induced by the map sending vΛ0
to the barycenter of σ

Λ̂0
.

Thus we may identify lk(vΛ, F
∗
Λ) and ∆Λ. With this connection we can define an

explicit metric on K.

Definition 5.7. We give the cell FΛ1
∩F ∗

Λ2
ofK the metric of a Coxeter block. Briefly,

this is (the closure of) a connected component of the Coxeter zonotope associated
to the finite Coxeter group WΛ2 minus its reflection hyperplanes. (See [CD95, §4.4],
where this metric is defined in detail for the Davis-Moussong complex and Deligne
complex.) In this metric, if Λ ∈ Sf , then ∆Λ is a spherical simplex where the length
of the edge between the vertices corresponding to i and j is π/mij .

Since K is a (strict) fundamental domain, we can use the action of ShΛ to metrize
all of ΘΓ. We will call this the Moussong metric on ΘΓ.

Now we recall the local development, focusing on the case of G. Let vΛ be a
vertex of K, with Λ ∈ Sf . The upper star StΛ of vΛ in G is the (full) subcomplex
of K spanned by the vertices vΛ′ with Λ′ ≥ Λ. The lower link LkΛ of vΛ in G is

the development of the subcomplex of groups Ĝ(K<Λ) of G(K), where K<Λ denotes
the subcomplex spanned by vertices vΛ′ with Λ′ ⪇ Λ. Both of these objects are
simplicial complexes which inherit the metric placed on K. The local development
at vΛ is the spherical join

D(Λ) = StΛ ∗ LkΛ.
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Its metric naturally comes from the metric on K. The link of vΛ in the local
development is

lk(vΛ, D(Λ)) = LkΛ ∗ LkΛ,

where LkΛ is the upper link, meaning the (full) subcomplex of K spanned by the
vertices vΛ′ with Λ′ ⪈ Λ. We may also sometimes refer to this complex as K>Λ.

Note that K>Λ is isomorphic to lk(vΛ, FΛ) and K<Λ is isomorphic to lk(vΛ, F
∗
Λ).

We use the previous proposition to identify K<Λ with ∆Λ. With this identification,

the complex of groups Ĝ(K<Λ) is isomorphic to Ĝ(ShΛ,∆Λ) as defined above, and

thus LkΛ is isomorphic to Θ̂Λ. It is straightforward to check that the metrics placed
on K above agree with the claimed metrics on ∆Λ. In other words, there is an
isometry

lk(vΛ, D(Λ)) ∼= lk(vΛ, FΛ) ∗ Θ̂Λ,

where the join is the usual spherical join. There are two special cases to note. When

Λ = ∅, then Θ̂∅ is empty, so lk(vΛ, D(Λ)) ∼= lk(vΛ, FΛ). When Λ is maximal in Sf ,
FΛ is a single point vΛ, so lk(vΛ, FΛ) is empty and lk(vΛ, D(Λ)) ∼= Θ̂Λ.

Showing the local development is nonpositively curved amounts to showing
that these links are CAT(1). Since a spherical join is CAT(1) if and only if both
components are [BH13, Cor. II.3.15], this reduces to showing that lk(vΛ, FΛ) and

Θ̂Λ are CAT(1) when Λ ∈ Sf . With this in mind, we can now complete the proof of
Theorem B. It will follow immediately by the next theorem and general facts about
simple complexes of groups.

Theorem 5.8. Suppose Γ is a 2-dimensional extended presentation graph. Then G
is developable and its development ΘΓ is CAT(0).

Proof. As in the Artin group and Coxeter group case, lk(vΛ, FΛ) is CAT(1) whenever

Λ ∈ SfΓ (see discussion before and after Lemma 4.4.1 in [CD95]), so it remains to

show that Θ̂Λ is CAT(1) for Λ ∈ SfΓ . Since Γ is 2-dimensional, the only elements of

Sf are ∅, singletons, and edges. In the first two cases, Θ̂Λ is either empty or finite,
resp., so we may assume we are in the third case. Note that if ShΛ is finite (i.e.,
has labels 1/pi + 2/mij + 1/pj > 1), then this complex was shown to be CAT(1)
in [Gol23, Lemma 6.1], so we may assume this group is infinite.

By [BH13, Lem. II.5.6], it suffices to show that Θ̂Λ has no closed loops of length

< 2π. Since the length of an edge of Θ̂Λ is π/mij , we must show that the edge

length of any closed loop in Θ̂Λ is at least 2mij . Let γ be an embedded closed

loop in Θ̂Λ, say γ = E1 · · ·En for edges Ei of Θ̂. Note that the edge path length
ℓ(γ) is n. For 1 ≤ i ≤ n, let vi be the vertex at which the edges Ei−1 and Ei meet
(with indices taken cyclically). Let si be the generator of ShΛ such that vi = gi⟨si⟩
for some gi ∈ ShΛ. We can write Ei = gis

mi
i Ei−1 for some mi ∈ Z. Since γ is

embedded, mi is not a multiple of psi (the order of si). Stringing together these
equalities gives a word sm1

1 sm2
2 · · · smn

n = 1 in ShΛ. Since si ≠ si+1, the syllable
length of this word is n = ℓ(γ). By Proposition 4.3, we must have ℓ(γ) = n ≥ 2mij .
The result now follows from Lemma 5.4. □

When the local groups of a nonpositively curved complex of groups are all finite,
this determines all finite subgroups of the fundamental group (namely, they are
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the conjugates of the local groups). While we can’t exactly say that here, we can
determine all elements of finite order.

Corollary 5.9. Suppose Γ is a 2-dimensional extended presentation graph. If
h ∈ ShΓ has finite order, then it is conjugate to a power of one of the standard
generators of ShΓ.

Proof. Suppose h ∈ ShΓ \ {e} has finite order. By [BH13, Cor. II.2.8(1)], the fixed
point set Fix(h) = {x ∈ ΘΓ : hx = x } is a non-empty convex subset of ΘΓ.
Since Γ is 2-dimensional, the simplices of ΘΓ are at most dimension 2, and these
top-dimensional simplices are of the form

[g0Sh∅, g1Sh{s}, g2She]

for e an edge of Γ and s a vertex of e. But the stabilizer of any point x in the interior
of such a cell is g−1

0 Sh∅g0, which is the trivial group. In particular, Fix(h) must be
a tree in the 1-skeleton of ΘΓ and avoid vertices of type [gSh∅]. If Fix(h) contains a
vertex V = [gSh{s}] or an edge E = [gSh{s}, g

′She], then h ∈ Stab(V ) = g−1Sh{s}g
and so is conjugate to a power of s. So suppose neither of these cases occur. This
implies Fix(h) = [gShe] for an edge e of Γ with vertices s and t, and h ∈ g−1Sheg.
By translating, we may assume g = e, so h ∈ She. Corollary 3.5 then implies h is
conjugate to a power of s or t. □

6. Acylindrical hyperbolicity

In [Vas22], it is shown that (irreducible) 2-dimensional Artin groups of rank at
least 3 are acylindrically hyperbolic. By modifying the proof appropriately, we
obtain an analogous result for 2-dimensional Shephard groups as an application of
Theorem B:

Theorem C. Suppose Γ is an extended presentation graph satisfying

(1) |V (Γ)| ≥ 3,
(2) Γ is 2-dimensional,
(3) ShΓ does not split as a direct product (i.e., it is irreducible), and
(4) every connected component of Γ has an edge e such that She is infinite.

Then ShΓ is acylindrically hyperbolic.

This follows from

Proposition 6.1. [Vas22, Theorem D] Let X be a CAT(0) simplicial complex,
together with an action by simplicial isomorphisms of a group G. Assume that there
exists a vertex v of X with stabilizer Gv such that:

(1) The orbits of Gv on the link lk(v,X) are unbounded, for the associated
angular metric.

(2) Gv is weakly malnormal in G, i.e., there exists an element g ∈ G such that
Gv ∩ gGvg−1 is finite.

Then G is either virtually cyclic or acylindrically hyperbolic.

Thus the extra assumption (4) of Theorem C is necessary to guarantee condition
(1) of Proposition 6.1 is satisfied; otherwise, all links would be finite graphs.

Lemma 6.2. Let Γ be a presentation graph satisfying the hypotheses of Theorem
C, and let e be any edge of Γ for which She is infinite. Then the orbits of She on
lk(ve,ΘΓ) are unbounded.
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Proof. Since ΘΓ is 2-dimensional, we know that lk(ve,ΘΓ) ∼= Θ̂e (see Section 5).
Suppose e has terminal vertices i and j, with labels p = pi, m = mij , and q = pj .
Since She is infinite, we know that 1/p+ 2/m+ 1/q ≤ 1, and She is a non-trivial
Z-central extension of a finite index subgroup of a triangle group in either E2 or H2

(see Section 3). As discussed in Section 3, the quotient of Θ̂e by the center of She is
the 1-skeleton of a semiregular tiling of E2 or H2, and this quotient is a covering
map. In particular, the group of deck transformations (which act hyperbolically)
of this cover is the central copy of Z in She; thus the orbits of this copy of Z are
unbounded. □

In order to show that the Shephard groups in question satisfy (2) of Proposition
6.1, we will detail the portions of the argument which must be modified, and refer
the reader to [Vas22, §5] for the full original argument.

Definition 6.3. Let Γ be an extended presentation graph. For vertices s, t of Γ, let
Γst denote the presentation graph with the same vertex and edge sets and labels as
Γ, but with the addition of an edge est labeled 6 if there is no edge between s and t
in Γ. (If there is already an edge between s and t, we leave Γ unchanged.) We then
define the domain KΓst and metric as in [Vas22, Def. 5.3]. Our complex of groups
over KΓst is defined similarly as well, but we place the free product Z/psZ ∗ Z/ptZ
as the edge group corresponding to est if this edge was added; we make no changes
if there were no changes made to Γ. This is in contrast to the Artin group case,
where the rank-2 free group is placed on this edge. We denote the development of
this complex of groups by ΘstΓ .

With this modification, the following key lemmas still hold, with completely
identical proofs after appropriate replacements are made with the definition(s)
above.

Lemma 6.4. [Vas22, Lemma 5.6] Let ShΓ be a 2-dimensional Shephard group with
|V (Γ)| ≥ 3, and suppose that we are in the second case of [Vas22, Proposition 5.2].
Then ΘbcΓ is CAT(0).

Lemma 6.5. [Vas22, Lemma 5.7] Let ShΓ be a 2-dimensional Shephard group with
|V (Γ)| ≥ 3, such that Γ is connected and not right-angled (i.e., has some edge not
labeled 2). Then there exists an edge e of Γ between vertices a and b with coefficient
mab ≥ 3 and an element g ∈ She such that She ∩ gSheg−1 = e.

Now we may complete the proof of Theorem C.

Proof (of Theorem C). We may assume Γ is connected, otherwise ShΓ splits as
a free product, and each free summand is an infinite group by (4); such groups
are always acylindrically hyperbolic. We may assume as well that Γ(∞) is not
right-angled; in this case, ShΓ is a graph product of non-trivial (cyclic) groups,
which by [MO15, Cor. 2.13] implies ShΓ is either virtually cyclic or acylindrically
hyperbolic. Taking e to be the edge guaranteed by (4), we know She is infinite, not
virtually cyclic, and embeds in ShΓ, so under our assumptions ShΓ is not virtually
cyclic (hence acylindrically hyperbolic). The proof of [Vas22, Prop. 5.2] and Lemma
6.5 imply that we may choose the edge e in Lemma 6.5 to be the edge e guaranteed
by (4). We note that this edge has label ≥ 3, since otherwise She would be a direct
product of finite groups and hence finite. So Lemmas 6.2 and 6.5 imply ShΓ satisfy
the hypotheses of Proposition 6.1, and hence is acylindrically hyperbolic. □
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7. Relative hyperbolicity and residual finiteness

Recall the following characterization of relative hyperbolicity, due to Bowditch
[Bow12]. This phrasing comes from [Osi06, Def. 6.2].

Proposition 7.1. Let G be a group and P = {P1, . . . , Pn} a collection of infinite
finitely generated subgroups (we will call (G,P) a group pair and the elements of
P the peripheral subgroups). Then (G,P) is relatively hyperbolic if and only if G
admits an action on a hyperbolic graph Y such that each of the following hold.

(1) All edge stabilizers are finite.
(2) All vertex stabilizers are either finite or conjugate to one of the subgroups

of P.
(3) The number of orbits of edges is finite.
(4) The graph Y is fine.

There are a number of equivalent definitions of a fine graph, but the one that
shall be useful for us is:

Definition 7.2. [Bow12, Def 2.1.(F5)] Let Y be a graph and let dY denote the
metric on Y which assigns all edges length 1. (By convention, for any graph Y
with such a metric, if y and z are in different connected components of Y , we say
dY (y, z) = ∞.) Fix a vertex x ∈ V (Y ) and let Y \x denote the largest full subgraph
of Y which avoids x. Let Vx(Y ) be the set of vertices of Y which are adjacent
to x. Let dY \x denote the induced length metric on Y \ x coming from dY , and
let dx denote the restriction of the metric dY \x to Vx(Y ) (not the induced length
metric). We say that Y is fine if the metric space (Vx(Y ), dx) is locally finite2 for
every x ∈ V (Y ).

In order to show that (certain) Shephard groups ShΓ are relatively hyperbolic,
we will use the action of ShΓ on its complex ΘΓ. Specifically, we will let Y = YΓ
denote the 1-skeleton of ΘΓ endowed with the edge-path metric (each edge is given
length 1). When ΘΓ is Gromov hyperbolic, so too is its 1-skeleton as a metric graph
under the induced length metric. But this metric graph is quasi-isometric to Y , and
hence Y is also hyperbolic. So, our first task is to determine when ΘΓ is hyperbolic.

Lemma 7.3. Let Γ be a 2-dimensional extended presentation graph. If WΓ is word
hyperbolic, then ΘΓ is Gromov hyperbolic.

Proof. By Theorem 5.8, ΘΓ is CAT(0). So by the Flat Plane Theorem, ΘΓ is
Gromov hyperbolic if and only if it contains no isometrically embedded copy of E2.
Suppose such an embedded plane exists (so ΘΓ is not hyperbolic). This plane must
be a subcomplex of ΘΓ, and in particular must pass through a vertex v of the form
[gSh∅] for some g ∈ ShΛ. This gives rise to an embedded loop of length exactly 2π

in the link of v. The link of such a vertex is isometric to lk(v∅, F∅)∗Θ̂∅ ∼= lk(v∅,K)
(see discussion after Definition 5.7). As in the Artin group case, such a link contains
a circuit of length exactly 2π if and only if WΓ is not hyperbolic [Cri05, Proof of
Lemma 5]. In summary, if WΓ is hyperbolic, then ΘΓ has no embedded flat plane,
and thus ΘΓ is Gromov hyperbolic. □

We would like to say that this is an “if and only if” statement, as in the Artin
group setting [CC07], but are unsure how to proceed. For the Artin groups, this

2Every finite-radius ball is a finite set.
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relies on the existence of an embedding of the Davis complex in the Deligne complex,
which is not yet known to exist for arbitrary Shephard groups. However, if such an
embedding exists, then the reverse implication is immediate.

Proposition 7.4. Suppose Γ is a 2-dimensional extended presentation graph such
that the Davis complex ΣΓ for the Coxeter group WΓ embeds isometrically in the
complex ΘΓ. Then if ΘΓ is Gromov hyperbolic, WΓ must be word hyperbolic.

Proof. Suppose WΓ is not hyperbolic. Then ΣΓ is not hyperbolic (since WΓ is
quasiisometric to ΣΓ), so it contains an embedded flat plane. Since ΣΓ embeds
isometrically in ΘΓ, we have that ΘΓ also contains an embedded flat plane, so is
not hyperbolic. □

The existence or non-existence of such an embedding is outside our current scope
of consideration. (Although it is natural to conjecture that there is always such an
embedding, since it exists for Artin groups and can be constructed case-by-case for
finite Shephard groups.)

Now we show that Y is fine. First recall the following notation. If X is a cell
complex and x ∈ X, the open star st(x) = st(x,X) is the union of all open cells
containing x, the closed star St(x) = St(x,X) is the (topological) closure of the
open star, and the boundary of the closed star is ∂St(x) = St(x) \ st(x).

Lemma 7.5. Suppose Γ is 2-dimensional. Let x be a vertex of ΘΓ (equivalently, of
YΓ) of the form [gShe] for g ∈ ShΓ and an edge e of Γ. Let ℓx denote the induced
length metric on ∂St(x) ⊆ ΘΛ. Then there is a C ≥ 1 and D ≥ 0 such that
ℓx(y, z) ≤ Cdx(y, z) +D for all y, z ∈ Vx(Y ).

Proof. Let ι : YΓ → ΘΓ denote the inclusion map which realizes the quasi-isometry
of YΓ with the edge length metric and ΘΓ with the Moussong metric. The restriction
of ι to Y \x is a quasi-isometry onto ΘΓ \ st(x), under the respective induced length
metrics dY \x and dΘΓ\st(x). We choose our C and D to be the constants from this
restricted quasi-isometry, i.e., those constants which satisfy

1

C
dY \x(y, z)−D ≤ dΘΓ\st(x)(y, z) ≤ CdY \x(y, z) +D

for all y, z ∈ Y \ {x}. Recall that dx is the restriction of dY \x to Vx(Y ), so if we
restrict ourselves to elements y, z of Vx(Y ), then we can say

1

C
dx(y, z)−D ≤ dΘΓ\st(x)(y, z) ≤ Cdx(y, z) +D

Fix y, z ∈ Vx(Y ). Let γ be a geodesic in ΘΓ \ st(x) from y to z. Then

ℓ(γ) = dΘΓ\st(x)(y, z) ≤ Cdx(y, z) +D.

Let ρ : ΘΓ → St(x) be the closest point projection onto the closed star St(x) (the
map which sends a point p ∈ X to a point ρ(p) ∈ St(x) which minimizes dΘΓ(p, ρ(p))).
Note that St(x) is a convex set: it is made up of Euclidean right triangles which have
one of their acute angles meeting at the common vertex x. Thus ρ is a well-defined,
distance non-increasing retraction [BH13, Prop. II.2.4(4)], and in particular restricts
to a well-defined distance non-increasing retraction ρ : ΘΓ \ st(x) → ∂St(x). So ρ(γ)
is a (rectifiable) path in ∂St(x) between y and z, implying

ℓx(y, z) ≤ ℓ(ρ(γ)) ≤ ℓ(γ) ≤ Cdx(y, z) +D. □

We can now complete the proof of Theorem D.
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Theorem D. Suppose Γ is a hyperbolic-type, 2-dimensional extended presentation
graph, and let P = { ShΛ : |V (Λ)| = 2, WΛ finite, ShΛ infinite }, the collection of
spherical-type edges of Γ which give rise to infinite Shephard groups. Then (ShΓ,P)
is a relatively hyperbolic group pair. In particular, if every edge group ShΛ is finite,
then ShΓ is hyperbolic.

Proof. When WΓ is hyperbolic, then ΘΓ is hyperbolic by Lemma 7.3. In particular,
Y is a hyperbolic graph since it is quasi-isometric to the 1-skeleton of ΘΓ. By
Proposition 5.3, the edge stabilizers of ShΓ acting on Y are either finite cyclic
(coming from the subgroups generated by the vertices) or trivial. Similarly, the
vertex stabilizers are the conjugates of ShΛ for Λ ∈ Sf . And since this is a cocompact
action with a strict fundamental domain, there are finitely many orbits of edges.
Once we show that Y is fine, the result will follow by Proposition 7.1.

Since the action of ShΓ on Y has a strict fundamental domain, we may restrict
our consideration to vertices of the form vΛ for Λ ∈ Sf (using notation from Section
5). Since Γ is 2-dimensional, there are three types of vertices x = vΛ to consider:
Λ = ∅, Λ = {s} a single vertex, or Λ = e a single edge. If Λ = ∅, then, as a set,
Vx(Y ) is simply the vertex set of lk(v∅, F∅), which is finite. Similarly, if Λ = {s},
then Vx(Y ) is the vertex set of the join of lk(v{s}, F{s}) and Θ̂{s}, which are both
finite, and hence Vx(Y ) is finite.

Suppose Λ = e is an edge between vertices s and t of Γ. Since ΘΓ is a piecewise
Euclidean simplicial complex with finitely many isometry types of faces, lk(x,ΘΓ)
is isometric to a sufficiently small sphere centered at x, and this sphere is a radial
deformation retract of ∂St(x). This graph isomorphism is actually a quasi-isometry.

We also know that Θ̂e with the Moussong metric is quasi-isometric to Θ̂e with the

metric dΘ̂e which assigns all edges length 1. In particular, there are C ′ ≥ 1 and

D′ ≥ 0 such that dΘ̂e(y, z) ≤ C ′ℓx(y, z) +D′ for all y, z ∈ ∂St(x) (or Θ̂e).
Now, let C and D be the constants guaranteed by Lemma 7.5. Fix a vertex y of

∂St(x) (or Vx(Y )). For N > 0, define

VN = { z ∈ Vx(Y ) : dx(y, z) ≤ N },

LN = { z ∈ Θ̂e : d
Θ̂e(y, z) ≤ C ′(CN +D) +D′ }.

Let z ∈ VN . Then

dΘ̂e(y, z) ≤ C ′ℓx(y, z) +D′ ≤ C ′(Cdx(y, z) +D) +D′ ≤ C ′(CN +D) +D′,

so z ∈ LN . In other words, VN ⊆ LN for all N > 0. We know that Θ̂e is a locally

finite graph: the vertices of Θ̂e coming from cosets of ⟨s⟩ have valence ps and the
vertices coming from cosets of ⟨t⟩ have valence pt, both of which we have assumed
to be finite. This implies LN is finite for every N , and hence so is VN . Therefore
Vx(Y ) is locally finite and YΓ is fine. □

This result is in stark contrast to the Artin group case, where it is very uncommon
for Artin groups to be relatively hyperbolic rather than just weakly relatively
hyperbolic. We can leverage this not only to show many nice properties of Shephard
groups, but also of many Artin groups as well. In the following section, we will
discuss an application to Artin groups, but first we will detail some easy consequences
of relative hyperbolicity for Shephard groups.
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Corollary E. Suppose Γ is a hyperbolic-type 2-dimensional extended presentation
graph. Then ShΓ

(1) has solvable word problem,
(2) satisfies the Tits alternative,
(3) has finite asymptotic dimension, and
(4) has the rapid decay property.

If, in addition, there is no edge {i, j} of Γ with 1/pi + 2/mij + 1/pj = 1, then ShΓ
is biautomatic.

Proof. Each property in the list holds for all of ShΓ if and only if it holds for the
peripheral subgroups. In more detail:

(1) The dihedral Shephard groups are linear, hence have solvable word problem.
This implies ShΓ has solvable word problem by [Far98].

(2) If (G,P) is a relatively hyperbolic pair, then it was shown in [Tuk94] that any
subgroup of G which does not contain a free group is either finite, virtually
infinite cyclic, or is contained in an element of P. Since the peripheral
subgroups of ShΛ are linear, they satisfy the Tits alternative, so we can
conclude ShΛ does as well.

(3) By [BD08], asymptotic dimension of finitely generated groups is preserved
by commensurability. Since the 3-dimensional integral Heisenberg group
and the universal central extensions of surface groups have finite asymptotic
dimension, so too do the peripheral subgroups of ShΛ. By [Osi05], this
implies ShΓ has finite asymptotic dimension.

(4) If e = {i, j} is an edge of Γ with 1/pi + 2/mij + 1/pj = 1, then She
has polynomial growth since it is commensurable to the 3-dimensional
integral Heisenberg group; groups of polynomial growth have the rapid decay
property by [Jol90]. If e = {i, j} is an edge of Γ with 1/pi+2/mij+1/pj < 1,
then She is a Z-central extension of a hyperbolic group; such groups have
the rapid decay property by [Nos92]. This implies ShΓ has the rapid decay
property by [DS05].

Last, if each edge {i, j} of Γ satisfies 1/pi+2/mij+1/pj ≠ 1, then each peripheral
subgroup is biautomatic by Proposition 3.9. This implies ShΛ is biautomatic
by [Reb01]. □

A more substantial corollary is residual finiteness for certain 2-dimensional
Shephard groups and their Artin groups. To discuss residual finiteness, we begin by
recalling the notion of a relatively geometric action recently introduced by Einstein
and Groves.

Definition 7.6. [EG22, Def 1.1] Suppose (G,P) is a group pair. An action of G
on a cell complex X is relatively geometric (with respect to P) if

(1) X/G is compact,
(2) Each group in P acts elliptically on X, and
(3) Each stabilizer of a cell in X is either finite, or conjugate to a finite index

subgroup of an element of P.

It is clear from Proposition 5.3 that if G = ShΓ is a 2-dimensional Shephard
group and P is as defined previously, then the action of ShΓ on its complex ΘΓ is
relatively geometric with respect to P. We want to make use of:



32 KATHERINE M. GOLDMAN

Proposition 7.7. [EG22, Cor 1.7] Suppose (G,P) is relatively hyperbolic and acts
relatively geometrically (with respect to P) on a CAT(0) cube complex X. If every
P ∈ P is residually finite, then G is residually finite.

We have a characterization of when ShΓ is relatively hyperbolic; if we can
determine when ΘΓ is a CAT(0) cube complex, we will determine a class of residually
finite Shephard groups.

Lemma 7.8. If Γ is 2-dimensional and type FC, then ΘΓ is a CAT(0) cube complex
under the “cubical metric”.

Proof. The cubical metric on the complex ΘΓ is defined as follows: rather than
metrize the cell FΛ1

∩F ∗
Λ2

to be a Coxeter block as in Definition 5.7, we simply give
it the metric of a standard Euclidean cube [0, 1]n (since this cell is combinatorially
a cube). Under this metric, the link of a vertex vΓ is still isometric to the spherical

join of lk(vΛ, FΛ) and Θ̂Λ, where the metric on these complexes now assigns edge
lengths of π/2.

In order to show that ΘΓ is a CAT(0) cube complex, we must show that the
links are flag complexes. Since the spherical join of flag complexes is flag, this is

equivalent to showing lk(vΛ, FΛ) and Θ̂Λ are flag for all Λ ∈ Sf . This is well known
for lk(vΛ, FΛ) since Γ is type FC [CD95, Lemma 4.3.4]. If Λ = ∅ or a single vertex

{s}, then Θ̂Λ is either empty or a finite set, resp., so there is nothing to check.

So, suppose Λ is an edge between vertices s and t. Since Θ̂Λ is a graph (i.e., a
1-dimensional simplicial complex), it suffices to show that it contains no 3-cycles.
But by Theorem 5.8, the girth of this graph is ≥ 2mst ≥ 4. □

Thus we may conclude,

Corollary F. Suppose Γ is an extended presentation graph with no 3-cycle (or is
“triangle-free”) and no 4-cycle whose edges are each labeled 2. Then ShΓ is residually
finite.

We note that the condition that Γ is 2-dimensional and type FC is equivalent to
requiring Γ has no 3-cycles (sometimes called “triangle-free”). For a triangle-free
presentation graph, having no 4-cycles with all edges labeled 2 is equivalent to WΓ

being hyperbolic (originally due to Moussong in [Mou88], rephrased in terms of the
presentation graph in [Cri05, Lemma 5] or [CC07, Prop. 3.1]).

Proof. SinceWΓ is hyperbolic, ShΓ is hyperbolic relative to its infinite spherical-type
edge subgroups (Theorem D). Since Γ is 2-dimensional and type FC, ΘΓ is a CAT(0)
cube complex under the cubical metric (Lemma 7.8) and the action is relatively
geometric with respect to the spherical-type edge subgroups. Since the dihedral
Shephard groups are residually finite (Proposition 3.7), we conclude that ShΓ is
residually finite (Proposition 7.7). □

In tandem with Corollary 5.9, we can show

Corollary 7.9. If Γ is triangle-free and has no 4-cycle with all labels 2, then ShΓ
is virtually torsion-free.

Proof. Let s ∈ V (Γ) be a standard generator of ShΓ. Since ShΓ is residually finite,
there is a finite index subgroup Gs < ShΓ which avoids s (meaning s ̸∈ Gs), and by
taking finitely many intersections, we can choose Gs to avoid all nontrivial powers
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of s. Let G =
⋂
s∈V (Γ)Gs, a finite index subgroup of ShΓ avoiding all nontrivial

powers of standard generators. Let N =
⋂
g∈ShΓ

g−1Gg < G. It is a standard

exercise to show that N (the “normal core” of G) is finite index when G is finite
index. Suppose g ∈ N has finite order. By Corollary 5.9, we can write g = h−1skh
for some h ∈ ShΓ, some s ∈ V (Γ), and some k ∈ Z. The definition of N implies
g ∈ h−1Gh, so sk ∈ G. Since the only power of a generators contained in G is e, we
must have that sk = e, and consequently g = e. Thus N is torsion-free. □

8. Application to Artin groups

We now establish the analogue of Corollary F for Artin groups. First, we recall
the definition of the Deligne complex of an Artin group to establish the notation
and terminology which we will use, as it may differ from some references.

Definition 8.1. Let Γ be any presentation graph and AΓSf = { aAΛ : a ∈ AΓ,Λ ∈
Sf } ordered by inclusion. The Deligne complex ΦΓ of AΓ is |(AΓSf )′|, the geometric
realization of the derived complex (AΓSf )′. An n-simplex of ΦΓ is written as

[a0AΛ0
< a1AΛ1

< · · · < anAΛn
]

where a0AΛ0 < a1AΛ1 < · · · < anAΛn is a chain of elements of AΓSf . For Λ ∈ SfΓ ,
the spherical Deligne complex Φ̂Λ is the simplicial complex whose vertices are all
cosets of Aŝ for s ∈ Λ, with a set of n+1 vertices spanning an n-simplex if and only
if they have nontrivial (global) intersection3.

AΓ acts on ΦΓ with a strict fundamental domain isomorphic to KΓ. Thus we may
endow the fundamental domain of ΦΓ with the “same” metric as ΘΓ (the Moussong
metric). For the vertex vΛ = [AΛ] of ΦΓ, the link lk(vΛ,ΦΓ) is isometric to the
spherical join

lk(vΛ, FΛ) ∗ Φ̂Λ

under this metric [CD95], where FΛ is defined as in Section 5.
One of the key properties which will allow us to pass between an Artin group

and its Shephard quotients is product separability. The following is one of the many
equivalent notions of product separability.

Definition 8.2. Let G be any group. We say that G is product separable if for any
(finite) collection {G1, . . . , Gn} of finitely generated subgroups of G, their product
G1G2 · · ·Gn is closed in the profinite topology on G.

Recall that the profinite topology on G is the topology whose basis of closed sets
are the finite-index subgroups of G. So it is equivalent to say that G1G2 · · ·Gn is
an intersection of finite-index subgroups of G.

Lemma 8.3. Let G be any group and H a finite-index subgroup. Then G is product
separable if and only if H is product separable.

Proof. Suppose G is product separable. Let {H1, . . . ,Hn} be a collection of finitely
generated subgroups of H. The inclusion map H ↪→ G is continuous for any
subgroup; the intersection of H with a finite index subgroup of G is finite index in
H regardless of the index of H in G. In particular, H1H2 · · ·Hn is closed in G and
is contained in H, so H1H2 · · ·Hn is closed in H.

3By ŝ, we mean the largest full subgraph of Λ which does not contain s.
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Now suppose H is product separable. By replacing H with the normal core of
H, we may assume H is normal in G. (When H is finite index, so is its normal
core, and product separability is inherited by subgroups.) Now let {G1, . . . , Gn} be
a collection of finitely generated subgroups of G, and let Hi = Gi ∩H for each i.
Each Hi is finitely generated since the Gi are, and Hi is finite index in Gi for each

i. So, for each i, let {h(i)1 , . . . , h
(i)
ki
} be a system of representatives of the left cosets

of Hi in Gi. For j = (j1, . . . , jn), let Sj = h
(1)
j1
H1h

(2)
j2
H2 . . . h

(n)
jn
Hn. Then

G1G2 · · ·Gn =
⋃

j=(j1,...,jn)

Sj .

We claim that each Sj is closed in G. For convenience, fix j and let hi = h
(i)
ji
. Then

we can rewrite Sj as

Sj = (h1H1h
−1
1 )(h1h2H2(h1h2)

−1)(h1h2h3H3(h1h2h3)
−1) . . .

. . . (h1h2 · · ·hn−1Hn−1(h1h2 · · ·hn−1)
−1)(h1h2 · · ·hnHn).

Since H is normal in G,

Sj(h1h2 · · ·hn)−1 = (h1H1h
−1
1 )(h1h2H2(h1h2)

−1)(h1h2h3H3(h1h2h3)
−1) . . .

. . . (h1h2 · · ·hnHn(h1h2 · · ·hn)−1)

is the product of finitely generated subgroups of H, thus closed in H. Since H is
finite index in G, it is closed in G as well. The profinite topology is invariant under
multiplication (from the left or right), so Sj is also closed in G. Thus G1G2 · · ·Gn
is the union of finitely many closed subsets of G, so is itself closed. □

Corollary 8.4. Dihedral Artin groups are product separable.

Proof. Suppose A is a dihedral Artin group with edge label m. If m = 2, then
A ∼= Z2, and product separability in this case is an easy exercise (following directly
from the fact that abelian groups are subgroup separable, i.e., every f.g. subgroup
is closed). If m > 2, then A is virtually Z × Fn, where Fn is a rank-n free
group [HJP16, Lemma 4.3]. By [You97], Z × Fn is product separable for any n, so
by Lemma 8.3, so is A.

By [RZ93, Thm. 2.1], the rank-2 free group F2 is also product separable; this is
the dihedral Artin group whose graph is two vertices not joined by an edge. □

Lemma 8.5. If G is any group and C is closed in the profinite topology on G, then
for all g ̸∈ C, there exists a finite group F and a surjective morphism φ : G → F
such that φ(g) ̸∈ φ(C).

Proof. Since C is closed in the profinite topology, it is the intersection of the finite-
index subgroups of G containing it. At least one of these subgroups, say H, must
avoid g. Let K denote the normal core of H, a finite-index normal subgroup of
G contained in H. Let φ denote the standard quotient map G → G/K. Then
gK ̸⊂ CK since CK ⊆ H, implying φ(g) ̸∈ φ(C). □

The following lemma is the main ingredient in the proof of residual finiteness for
these Artin groups.

Lemma 8.6. Suppose Λ = e is a single edge with label q < ∞. Let x, y ∈ Φ̂Λ be
any two points. Then there is some N ∈ Z>0 such that for all k ≥ 1, the images of

x and y under the quotient map Φ̂Λ → Θ̂Λ(kN) remain at the same distance.



2-DIMENSIONAL SHEPHARD GROUPS 35

Proof. Suppose s and t are the vertices of e, let S = ⟨s⟩ and T = ⟨t⟩, and let E be

the edge between S and T in Φ̂Λ. First, suppose x and y are vertices. By symmetry
and translating, we may assume x = S. Let γ = E1E2 · · ·En be a geodesic edge
path connecting x and y. Notice that E1 and E both contain x = S; this means
there is some k1 ∈ Z such that E1 = sk1E (we could have k1 = 0 if E1 = E).
Similarly, E2 and E1 both contain the vertex sk1T , so there is some k2 ∈ Z such
that E2 = sk1tk2E1. Since γ is a geodesic, it is locally embedded, so k2 ̸= 0.
Repeating this, for all i > 1, we see Ei = αiEi−1, where

αi = sk1tk2sk3 · · ·︸ ︷︷ ︸
i syllables

,

for some ki ̸= 0. (A syllable is a word of the form sj or tj .)
Let α = αn. Notice that

α ̸∈ C := STS · · ·︸ ︷︷ ︸
n−1 cosets

,

since otherwise we could reverse the above argument to construct a path from x to
y with strictly shorter length than γ. Since AΛ is product separable (Corollary 8.4),
C is closed in the profinite topology on AΛ, so we can find a finite group F and
surjective morphism φ : AΛ → F so that φ(α) ̸∈ φ(C) (Lemma 8.5). Let ps and pt
be the orders of φ(s) and φ(t), respectively, and let N = lcm{ps, pt}. Fix k ≥ 1, and
let · : AΛ → ShΛ(kN) denote the standard quotient map. The orders of φ(s) and

φ(t) divide the orders of s and t, resp., or in other words, skN , tkN ∈ ker(φ). Since
ker( · ) is the normal closure of skN and tkN in AΛ, it follows that ker( · ) ≤ ker(φ).
This means there exists a surjection ρ : ShΛ(kN) → F which makes the diagram

AΛ F

ShΛ(kN)

φ

· ρ

commute. This implies in particular that α ̸∈ C; otherwise φ(α) = ρ(α) ∈ ρ(C) =
φ(C).

By abuse of notation, let · : Φ̂Λ → Θ̂Λ(kN) denote the map induced by the
quotient AΛ → ShΛ(kN). We claim that γ is still a geodesic between x and y. Let

γ′ be a geodesic from x to y in Θ̂Λ(kN), say γ
′ = E′

1 · · ·E′
m. By the same reasoning

in Φ̂Λ, for each i we can find ℓi ∈ Z so that E′
i = α′

iE
′
i−1, where

α′
i = sℓ1t

ℓ2sℓ3 · · ·︸ ︷︷ ︸
i syllables

,

and ℓi ̸= 0 when i > 1. Let α′ = α′
m.

Notice E′
m and En meet at y. Since Θ̂Λ(kN) is bipartite, we know m and n have

the same parity. If they are odd, let h = t and H = T , and if they are even, let
h = s and H = S. In either case, y is a coset of H, so there is some ℓm+1 ∈ Z such

that α = α′h
ℓm+1

. Writing out α′, we see

α = (sℓ1t
ℓ2sℓ3 · · ·︸ ︷︷ ︸

m syllables

)h
ℓm+1

= sℓ1t
ℓ2sℓ3 · · ·︸ ︷︷ ︸

m+1 syllables

.
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Since α ̸∈ C = S T S · · · (n − 1 cosets), we know m + 1 > n − 1, i.e., m > n − 2.
But since m and n are the same parity, m ≥ n. Thus γ is a geodesic and d(x, y) =
ℓ(γ) = (π/q)n = ℓ(γ) = d(x, y).

Now suppose x and y are any two points of Φ̂Λ. If x is a vertex, let X1 = X2 = x,
and if x is not a vertex, let X1 and X2 be the two distinct vertices of the edge
containing x. Similarly, if y is a vertex, let Y1 = Y2 = y, and if y is not a vertex, let
Y1 and Y2 be the two distinct vertices of the edge containing y. For i, j ∈ {1, 2},
let γij be a geodesic from Xi to Yj . For each i, j, by our work above we can find
Nij ≥ 1 so that γij remains a geodesic of the same length under the quotient to

Θ̂Λ(kNij) for each k ≥ 1. Let N = lcm{Nij} and fix k ≥ 1. Let · : Φ̂Λ → Θ̂Λ(kN)

be the quotient map. Then each γij is a geodesic in Θ̂Λ(kN) of the same length

as γij . Suppose γ is a geodesic from x to y in Θ̂Λ(kN). Then there is some I and

some J so that γ passes through XI and YJ . Note that since · is a simplicial map,
d(x,XI) = d(x,XI) and d(y, YJ) = d(y, YJ). Then

d(x, y) = ℓ(γ)

= ℓ(γ|[x,XI ]
) + ℓ(γ|[XI ,Y J ]

) + ℓ(γ|[Y J ,y]
)

= d(x,XI) + ℓ(γ|[XI ,Y J ]
) + d(Y J , y)

= d(x,XI) + ℓ(γIJ) + d(Y J , y)

= d(x,XI) + ℓ(γIJ) + d(YJ , y)

= d(x,XI) + d(XI , YJ) + d(YJ , y)

≥ d(x, y).

Since the quotient clearly cannot increase distance, d(x, y) = d(x, y). □

Lemma 8.7. Suppose Γ is a 2-dimensional presentation graph. Let γ be a geodesic
segment of ΦΓ. Then there is some k ≥ 2 so that the image of γ under the natural
quotient ΦΓ → ΘΓ(k) remains a geodesic segment of the same length.

Proof. For k ≥ 2, let ρk : ΦΓ → ΘΓ(k) denote the usual quotient map induced by
the quotient qk : AΓ → ShΓ(k). Let x be a point in the interior of γ.

If x is in the interior of a 2-simplex of ΦΓ, then ρk(γ) is locally geodesic at ρk(x)
for any value of k, since ρp maps 2-simplices isometrically to 2-simplices. In this
case, define nx = 2.

If there is a neighborhood of x in γ which is contained in an edge, then there
is nothing to show since edges are mapped isometrically to edges (in other words,
ρk(γ) is locally geodesic at ρk(x) for any value of k). In this case, as above, define
nx = 2.

Suppose x is a point contained in the interior of an edge E of ΦΓ with no
neighborhood of x in γ also contained in this edge. First, suppose E = [a1A∅, a2As]
for a vertex s of Γ or E = [a1A∅, a2Ae] for an edge e of Γ. Then the stabilizer of
E is trivial, and in particular, the link of E is mapped isomorphically to the link
of ρk(E) for any k. So suppose E = [a1As, a2Ae] for a vertex s of Γ and an edge
e of Γ containing s. Let ∆1 and ∆2 denote the distinct 2-simplices containing E
whose interiors nontrivially intersect γ. The stabilizer of E is conjugate to ⟨s⟩ and
acts transitively on the link of E, so there is some g ∈ AΓ and some nx ∈ Z such
that ∆2 = (g−1snxg)∆1. (Since γ is a geodesic, nx ̸= 0.) For k > |nx|, ρk(∆1) and
ρk(∆2) are the 2-simplices of ΘΓ(k) containing ρk(E) (and ρk(x)) whose interiors
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intersect ρk(γ). Moreover, ρk(∆2) = qk(g
−1snxg)ρk(∆1). If ρk(∆2) = ρk(∆1), then

qk(g
−1snxg) = e, but this happens if and only if qk(s

nx) = e. Since k > |nx|, this
can’t happen, so ρk(∆2) ̸= ρk(∆1) and ρk(γ) is locally geodesic at ρk(x) for all
k > |nx|.

Last, suppose x is a vertex of ΦΓ. Then x = [gAΛ] for some g ∈ AΓ and some
Λ ∈ Sf . There are three subcases to consider.

First, assume Λ = ∅. Then for any k ≥ 2, ρk(x) = [qk(g)Sh∅], and ρk induces an
isometry of the link of x and the link of ρk(x) (both being isometric to lk(v∅, F∅)).

Next, assume Λ = {s} for a vertex s of Γ. The link of x is the join of lk(vs, Fs)

and Φ̂{s}, the latter of which is in bijection with ⟨s⟩ ∼= Z. The intersection of the
ε-sphere of x with γ induces two points y, z ∈ lk(x) of distance ≥ π apart. Every

point of Φ̂{s} is distance π/2 from every point of lk(vs, Fs) (by the definition of

spherical join), so either y, z ∈ lk(vs, Fs) or y, z ∈ Φ̂{s}. If y, z ∈ lk(vs, Fs), then as
in the previous case ρk acts isometrically on lk(vs, Fs) for any k ≥ 2, so y and z

remain at the same distance under ρk. If y, z ∈ Φ̂{s}, then they can be represented
by some powers of s, say sn and sm with n ̸= m ∈ Z. (Since γ is a geodesic, these
points are distinct.) By translating we may assume these points are in fact e (= s0)
and snx for nx = m− n ̸= 0. Choosing k > |nx|, ρk acts by the standard quotient
Z → Z/kZ and thus these points remain distinct. In other words, for k > |nx|,
ρk(γ) is locally geodesic at ρk(x).

Finally, suppose Λ is an edge with finite label m. Then, as before, the intersection

of γ with the ε-sphere of x induces two points y, z ∈ lk(x) = Φ̂Λ of distance ≥ π.
Lemma 8.6 implies that there is some nx ≥ 1 so that the distance between y and z
remains ≥ π in the quotient via ρk for all k which are (positive) multiples of nx. In
other words, for all such k, ρk(γ) is locally geodesic at ρk(x).

Let k ≥ 2 be a common multiple of { |nx| : x ∈ int(γ) }. (This set is finite and
consists of positive integers, so k exists.) Our above arguments show that ρk(γ) is
locally geodesic at ρk(x) for all x, or in other words, that ρk(γ) is a local geodesic
in ΘΓ(k). Since ΘΓ(k) is CAT(0), this implies ρk(γ) is a geodesic and has the same
length as γ. □

Now we may complete the proof of

Theorem G. Suppose Γ is a triangle-free presentation graph with no 4-cycle with
all edges labeled 2. Then AΓ is residually finite.

Proof. Let g ∈ AΓ\{e}. Let γ be the geodesic in ΦΓ from [A∅] to [gA∅]. By Lemma
8.7, there is some k so that the image γ of γ under the quotient map to ΘΓ(k) is
a geodesic. If g denotes the image of g under the quotient AΓ → ShΓ(k), then γ
is a geodesic from [Sh∅] to [gSh∅]. Since ΘΓ(k) is CAT(0), this means g ̸= e. But
ShΓ(k) is residually finite (Corollary F), so there is a further quotient ShΓ(k) → F
to a finite group F under which g remains nontrivial. Composing these maps gives
a quotient AΓ → F to a finite group where the image of g is nontrivial. □
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[DS05] Cornelia Druţu and Mark Sapir. Relatively hyperbolic groups with rapid decay property.

International Mathematics Research Notices, 2005(19):1181–1194, 2005.
[EG22] Eduard Einstein and Daniel Groves. Relatively geometric actions on CAT(0) cube com-

plexes. Journal of the London Mathematical Society, 105(1):691–708, 2022.

[Far98] Benson Farb. Relatively hyperbolic groups. Geometric and functional analysis, 8(5):810–
840, 1998.

[Gol23] Katherine Goldman. CAT(0) and cubulated Shephard groups. arXiv preprint
arXiv:2310.10883, 2023.

[Hae22] Thomas Haettel. XXL type Artin groups are CAT(0) and acylindrically hyperbolic. In

Annales de l’Institut Fourier, volume 72, pages 2541–2555, 2022.
[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[HJP16] Jingyin Huang, Kasia Jankiewicz, and Piotr Przytycki. Cocompactly cubulated 2-

dimensional Artin groups. Commentarii Mathematici Helvetici, 91(3):519–542, 2016.
[Jan22] Kasia Jankiewicz. Residual finiteness of certain 2-dimensional Artin groups. Advances in

Mathematics, 405:108487, 2022.

[Jol90] Paul Jolissaint. Rapidly decreasing functions in reduced C∗-algebras of groups. Transac-
tions of the American Mathematical Society, 317(1):167–196, 1990.

[Kal] Generated with KaleidoTile by Jeff Weeks:

https://www.geometrygames.org/KaleidoTile/index.html.en.
[KS04] Ilya Kapovich and Paul Schupp. Relative hyperbolicity and Artin groups. Geometriae

Dedicata, 107:153–167, 2004.
[Mil75] John Milnor. On the 3-dimensional Brieskorn manifolds M(p, q, r). Knots, groups and

3-Manifolds, 3:175–225, 1975.

[MO15] Ashot Minasyan and Denis Osin. Acylindrical hyperbolicity of groups acting on trees.
Mathematische Annalen, 362(3):1055–1105, 2015.

[Mou88] Gabor Moussong. Hyperbolic Coxeter groups. PhD thesis, The Ohio State University,

1988.
[MS16] Giovanni Moreno and Monika Ewa Stypa. On the vertex-to-edge duality between the

Cayley graph and the coset geometry of von Dyck groups. Mathematica Slovaca, 66(3):527–

538, 2016.
[Nos92] Gennady Andreevich Noskov. Algebras of rapidly decreasing functions on groups and

cocycles of polynomial growth. Sibirskii Matematicheskii Zhurnal, 33(4):97–103, 1992.
[NR97] Walter D Neumann and Lawrence Reeves. Central extensions of word hyperbolic groups.

Annals of mathematics, 145(1):183–192, 1997.

[Osi05] Denis Osin. Asymptotic dimension of relatively hyperbolic groups. International Mathe-
matics Research Notices, 2005(35):2143–2161, 2005.

[Osi06] Denis Osin. Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and

Algorithmic Problems, volume 843. American Mathematical Soc., 2006.
[Reb01] Donovan Yves Rebbechi. Algorithmic properties of relatively hyperbolic groups. PhD

thesis, 2001.

https://www.geometrygames.org/KaleidoTile/index.html.en


2-DIMENSIONAL SHEPHARD GROUPS 39

[RZ93] Luis Ribes and Pavel A Zalesskii. On the profinite topology on a free group. Bulletin of
the London Mathematical Society, 25(1):37–43, 1993.

[She52] G. C. Shephard. Regular complex polytopes. Proceedings of the London Mathematical
Society, s3-2(1):82–97, 1952.

[Tuk94] Pekka Tukia. Convergence groups and Gromov’s metric hyperbolic spaces. New Zealand

J. Math., 23(2):157, 1994.
[Vas22] Nicolas Vaskou. Acylindrical hyperbolicity for Artin groups of dimension 2. Geometriae

Dedicata, 216(1):7, 2022.

[You97] Shihong You. The product separability of the generalized free product of cyclic groups.
Journal of the London Mathematical Society, 56(1):91–103, 1997.


	1. Introduction
	1.1. Organization of paper
	Acknowledgements

	2. Central Extensions
	2.1. Central products

	3. Dihedral Shephard groups
	3.1. Dihedral Shephard groups as central extensions
	3.2. Further geometry of the extension

	4. The syllable length condition
	5. A CAT(0) cell complex for 2-dimensional Shephard groups
	6. Acylindrical hyperbolicity
	7. Relative hyperbolicity and residual finiteness
	8. Application to Artin groups
	References

