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Introduction
The main result of this work is the following.

Theorem. Let 𝑉 be a finite dimensional real vector space, ℳ a finite
set of homogeneous hyperplanes of 𝑉 , 𝑉ℂ the complexification of 𝑉 , and
𝑌 = 𝑉ℂ −

Ť

𝑀∈ℳ
𝑀ℂ. Suppose that the connected components of 𝑉 −

Ť

𝑀∈ℳ
𝑀

are open simplicial cones. Then 𝑌 is a 𝐾(𝜋, 1).

Take 𝑉 as above and𝑊 Ă 𝐺𝐿 (𝑉) a finite group generated by reflections.
Suppose no non-zero vector of 𝑉 is fixed by𝑊 :

𝑉𝑊 = 0.

Let 𝛷 be a Euclidean structure on 𝑉 invariant under 𝑊 , with ℳ a set of
hyperplanes 𝑀 such that the orthogonal reflection with respect to 𝑀 is in𝑊 .
We then know that (𝑉,ℳ) satisfies the hypothesis of the theorem, and that
W acts freely on the corresponding space 𝑌𝑊 . The quotient 𝑋𝑊 = 𝑌𝑊/𝑊 is
therefore also a 𝐾(𝜋, 1).

This result had been conjectured by Brieskorn. It is only new for𝑊 of
type𝐻3, 𝐻4, 𝐸6, 𝐸7 and 𝐸8 (Brieskorn [2]). We also give a new proof that the
fundamental group of 𝑋𝑊 is the generalized braid group 𝑊̃ corresponding
to𝑊 (Brieskorn [3]).

Reduced to the particular case considered above, the outline of the proof
is as follows.

a) We construct a building 𝐼 (𝑊̃) on which𝑊 acts, and a set 𝒮 of spheres
in 𝐼 (𝑊̃) isomorphic to the unit sphere of 𝑉 . The group 𝑊̃ acts strictly
transitively on 𝒮.

b) We show that, up to homotopy, 𝐼 (𝑊̃) is the bouquet of the spheres
𝑆 ∈ 𝒮.

c) We relate 𝑋𝑊 and 𝐼 (𝑊̃).
The description of 𝒮 and the possibility of c) came from a conversation

with Brieskorn and Tits in the spring of 1970. The ideas required to establish
b) were provided to me by Garside [4], to whom I am often very near.
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In Section 4, we determine the center of 𝑊̃ , and we solve the word
problem and conjugacy problem in 𝑊̃ . These results were independently
obtained by E. Brieskorn and K. Saito, who use Garside’s methods as we do
[4].

The geometric language used and the proof techniques are essentially
due to Tits, whose ideas I was able to familiarize myself with by attending
one of his seminars and during conversations.

I am happy to be able to express my gratitude to him here.

0. Notation
(0.1) 𝐿+ (𝐷): the free (unitial) monoid generated by the set 𝐷.
(0.2) 𝐿 (𝐷): the free group generated by the set 𝐷.
(0.3) 𝐴−: the closure of a subset 𝐴 of a topological space.
(0.4) For elements 𝑥, 𝑦 of a monoid and 𝑛 ≧ 0, we write prod(𝑛; 𝑥, 𝑦) =

𝑥𝑦𝑥𝑦 . . . (𝑛 factors); we have prod(2𝑛; 𝑥, 𝑦) = (𝑥𝑦)𝑛,
prod(2𝑛 + 1; 𝑥, 𝑦) = (𝑥𝑦)𝑛𝑥.

§ 1. Galleries
(1.1) Let ℳ be a finite set of hyperplanes (the walls) of a finite dimensional
real vector space 𝑉 . We use the terminology (walls, chambers, faces, facets)
of [1] V §1 (the facets form a partition of 𝐸). The support 𝑃 of a facet 𝐹 is
the intersection of the walls containing 𝐹; 𝐹 is open in 𝑃. For any chamber
𝐴 and any wall 𝑀, we denote by 𝐷𝑀 (𝐴) the set of chambers on the same
side of 𝑀 as 𝐴. If 𝐴 and 𝐵 are two chambers, we denote by 𝐷 (𝐴, 𝐵) the
intersection of all 𝐷𝑀 (𝐶) containing 𝐴 and 𝐵 [tr. note: this definition has
been corrected from the original paper]. Leaving the terminology of [1] IV
1 ex 15, we say that two chambers 𝐴 and 𝐵 are adjacent if 𝐴 =| 𝐵 but 𝐴 and
𝐵 have one face in common. We will repeatedly use the following trivial
facts.
(1.2) Lemma. (i) Let 𝑀 be a wall of a chamber 𝐵. There exists exactly
one chamber 𝐵′ adjacent to 𝐵 which has 𝑀 as a wall. 𝑀 is the only wall
which separates 𝐵 and 𝐵′.

(ii) Let 𝐵1, 𝐵2, 𝐵3 be three chambers, and ℳ(𝐵𝑖 , 𝐵 𝑗 ) the set of walls
which separate 𝐵𝑖 from 𝐵 𝑗 . We have

ℳ(𝐵1, 𝐵3) =
(
ℳ(𝐵1, 𝐵2) −ℳ(𝐵2, 𝐵3)

)
Y
(
ℳ(𝐵2, 𝐵3) −ℳ(𝐵1, 𝐵2)

)
A gallery of length 𝑛 (𝑛 ≧ 0) with start 𝐴 and end 𝐵 is a sequence

of chambers (𝐶0, . . . , 𝐶𝑛) with 𝐴 = 𝐶0, 𝐶𝑖+1 adjacent to 𝐶𝑖 (0 ≦ 𝑖 ≦ 𝑛)
and 𝐶𝑛 = 𝐵. The composition of two galleries 𝐺 = (𝐶0, . . . , 𝐶𝑛) and
𝐺′ = (𝐶′0, . . . , 𝐶

′
𝑛) is defined if 𝐶𝑛 = 𝐶′0, in which case it is
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𝐺𝐺′ = (𝐶0, . . . , 𝐶𝑛, 𝐶
′
1, . . . , 𝐶

′
𝑚).

If 𝐺 is a gallery starting at 𝐴, 𝐴.𝐺 denotes its end.
The opposite gallery 𝐺∗ of a gallery 𝐺 = (𝐶0, . . . , 𝐶𝑛) is the gallery

(𝐶𝑛, . . . , 𝐶0). We have (𝐺𝐺′)∗ = 𝐺′∗𝐺∗.
The antipodal gallery −𝐺 of a gallery 𝐺 = (𝐶0, . . . , 𝐶𝑛) is the sequence

of antipodal chambers −𝐺 = (−𝐶0, . . . ,−𝐶𝑛).
We have −(𝐺𝐺′) = (−𝐺) (−𝐺′) and −(𝐺∗) = (−𝐺)∗.
The distance 𝑑 (𝐴, 𝐵) between a chamber 𝐴 and chamber 𝐵 is the smallest

length of a gallery starting at 𝐴 and ending at 𝐵. A gallery from 𝐴 to 𝐵 is
minimal if its length is 𝑑 (𝐴, 𝐵).
(1.3) Proposition. The distance 𝑑 (𝐴, 𝐵) is the number of walls which
separate 𝐴 and 𝐵. For a gallery𝐺 from 𝐴 to 𝐵 to be minimal, it is necessary
and sufficient that it crosses the walls which separate 𝐴 and 𝐵 exactly once
and does not cross any other walls.

It is clear that any gallery from 𝐴 to 𝐵 crosses each wall which separates
𝐴 and 𝐵, and it suffices to prove the existence of a gallery 𝐺 from 𝐴 to 𝐵 of
length equal to the number 𝑘 of walls which separate 𝐴 from 𝐵. We proceed
by induction on 𝑘 . The intersection of the 𝐷𝑀 (𝐴) for 𝑀 a wall of 𝐴 is just
𝐴. Hence, either 𝐴 = 𝐵, in which case we take 𝐺 = (𝐴), or there exists a
wall 𝑀 of 𝐴 which separates 𝐴 from 𝐵. Let 𝐴′ be the chamber adjacent to 𝐴
with 𝑀 as a wall. 𝑀 is the only wall that separates 𝐴 from 𝐴′, so a wall 𝑁
separates 𝐴′ and 𝐵 if and only if 𝑀 =| 𝑁 and separates 𝐴 and 𝐵. According
to the induction hypothesis, there exists a gallery 𝐺′ of length 𝑘 − 1 from 𝐴′

to 𝐵, and we take 𝐺 = (𝐴𝐴′)𝐺′.
(1.4) Corollary. Let 𝐴, 𝐵, 𝐶 be three chambers. The following conditions
are equivalent.

(i) 𝑑 (𝐴,𝐶) = 𝑑 (𝐴, 𝐵) + 𝑑 (𝐵,𝐶), i.e. there exists a minimal gallery
from 𝐴 to 𝐶 passing through 𝐵.

(ii) For a wall to separate 𝐴 from 𝐶, it is necessary and sufficient that it
separate 𝐴 from 𝐵 or 𝐵 from 𝐶. In other words, ℳ(𝐴, 𝐵) Ă ℳ(𝐴,𝐶)

(
cf.

1.2 (ii)
)
.

(iii) 𝐵 ∈ 𝐷 (𝐴,𝐶).
(1.5) Proposition. Let 𝑃 be an intersection of walls, 𝑉𝑃 = 𝑉/𝑃, pr𝑃 :
𝑉 → 𝑉𝑃 the projection map and ℳ𝑃 the collection of hyperplanes 𝑁 of 𝑉𝑃
such that pr−1

𝑃
(𝑁) is a wall. We denote by 𝜋′

𝑃
the unique map from the facets

of (𝑉,ℳ) to those of (𝑉𝑃 ,ℳ𝑃) satisfying pr𝑃 (𝐹) Ă 𝜋′
𝑃
(𝐹).

(i) 𝜋′
𝑃

respects the incidence relation 𝐹1 Ă 𝐹−2 : if 𝐹1 Ă 𝐹−2 , we have

codim(𝐹1 in 𝐹−2 ) ≧ codim(𝜋′𝑃 [𝐹1] in 𝜋′𝑃 [𝐹2]).
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𝜋′
𝑃

takes chambers to chambers; if 𝐴 and 𝐵 are adjacent, then either
𝜋′
𝑃
(𝐴) = 𝜋′

𝑃
(𝐵), or 𝜋′

𝑃
(𝐴) and 𝜋′

𝑃
(𝐵) are adjacent.

(ii) Suppose 𝐹 is a facet with support 𝑃 (1.1). The restriction of 𝜋′
𝑃

to
the set of facets 𝐸 of (𝑉,ℳ) such that 𝐹 Ă 𝐸− is bijective. Thus the inverse
𝜋𝐹 respects codimension, incidence 𝐸1 Ă 𝐸−2 , and therefore adjacency
of chambers. We will also use 𝜋𝐹 to denote the bijection pr−1

𝑃
between

intersections of walls in 𝑉𝑃 and intersections of walls in 𝑉 containing 𝑃.
(iii) If 𝐶 = 𝜋𝐹 (𝐶′), we have, for each chamber 𝑋 of (𝑉,ℳ),

𝜋−1
𝐹 𝐷 (𝐶, 𝑋) = 𝐷

(
𝐶′, 𝜋′𝑃 (𝑋)

)
and 𝜋−1

𝐹 ℳ(𝐶, 𝑋) = ℳ𝑃

(
𝐶′, 𝜋′𝑃 (𝑋)

)
.

For 𝑋 = 𝜋𝐹 (𝑋 ′), we have

𝜋𝐹
(
𝐷 (𝐶′, 𝑋 ′)

)
= 𝐷 (𝐶, 𝑋) and 𝜋𝐹

(
ℳ𝑃 (𝐶′, 𝑋 ′)

)
= ℳ(𝐶, 𝑋);

𝜋𝐹 then induces a bijection between minimal galleries from 𝐶′ to 𝑋 ′ and 𝐶
to 𝑋 .

The proof is left to the reader
(
(iii) follows from 1.4(ii)⇔(iii)

)
.

(1.6) Notation. (i) For a facet 𝐹 with support 𝑃, we let 𝑉𝑃 , ℳ𝑃 , pr𝑃 , 𝜋′
𝑃

denote 𝑉𝐹 , ℳ𝐹 , pr𝐹 , 𝜋′
𝐹

.
(ii) Suppose 𝑃 is an intersection of walls and 𝐶 is a chamber. We

assume that there is a facet of 𝐶 (i.e. in 𝐶−) with support 𝑃. This facet is
then unique. We denote it by 𝐹 (𝑃) and set

𝐶.𝛥(𝑃) = 𝜋𝐹 (𝑃)
(
− 𝜋−1

𝐹 (𝑃) (𝐶)
)
.

(1.7) Lemma. (i) In order for a wall to separate 𝐶 and 𝐶.𝛥(𝑃), it is
necessary and sufficient that it contain 𝑃

(
(1.5)(iii)

)
.

(ii) For a wall 𝑀 of 𝐶, 𝐶.𝛥(𝑀) is the unique chamber adjacent to 𝐶
with 𝑀 as a wall.

(
cf. 1.5(iii), 1.2(i)

)
(iii) Suppose 𝑀 =| 𝑁 are two walls of 𝐶, whose intersection 𝑃 contains

a facet of 𝐶 open in 𝑃. There are exactly two minimal galleries from 𝐶 to
𝐶.𝛥(𝑃). One begins with (𝐶,𝐶.𝛥(𝑀)), the other with (𝐶,𝐶.𝛥(𝑁)).

The assertion (iii) is shown by reduction to rank two, (cf. 1.5(iii)), where
the drawing is

(1.7.1)
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We will now assume that the following condition holds.
(1.8) Assumption. The chambers are open simplicial cones.

In other words, each chamber is a set of points with positive coordinates
in a suitable basis of 𝑉 .
(1.9.1) Remark. Let 𝑃 be an intersection of walls.

(i) (𝑉𝑃 ,ℳ𝑃) also satisfies (1.8);
(ii) the set ℳ𝑃 of intersections with 𝑃 of walls which don’t contain 𝑃

also satisfies (1.8).
If ℳ is defined by a “Weyl group”𝑊 (see the introduction), ℳ𝑃 is not

in general of this type.
(1.9.2) Remark. The hypothesis (1.8) guarantees that if 𝑃 is an intersection
of walls of a chamber 𝐶, the condition in (1.6) is satisfied. The chamber
𝐶.𝛥(𝑃) is therefore defined.
(1.10) Definition. Two galleries 𝐺 and 𝐺′ with the same beginning and
end are equivalent (notation: 𝐺 ∼ 𝐺′) if there is a sequence of galleries
𝐺 = 𝐺0, . . . , 𝐺𝑛 = 𝐺′ (𝑛 ≧ 0) such that 𝐺 𝑗+1 is related to 𝐺 𝑗 in the
following way (0 ≦ 𝑗 < 𝑛):

a) we have decompositions 𝐺 𝑗 = 𝐸1𝐹𝐸2, 𝐺 𝑗+1 = 𝐸1𝐹
′𝐸2;

b) there is a chamber 𝐶 and two walls 𝑀, 𝑁 of 𝐶 such that 𝐹 and 𝐹′
are the two minimal galleries from 𝐶 to 𝐶.𝛥(𝑀X𝑁).

Composition of galleries, the operations 𝐺 → 𝐺∗ and 𝐺 → −𝐺, the
start and end, and the length function are all compatible with this equivalence
relation and thus pass to the quotient. In general, we will denote gallery
classes in lowercase. We say that a class of galleries 𝑒 begins (resp. ends)
with a class of galleries 𝑓 if there exists 𝑔 such that 𝑒 = 𝑓 𝑔 (resp. 𝑒 = 𝑔 𝑓 ).
One checks:
(1.11) Proposition. Two equivalent galleries cross each wall the same
number of times.
(1.12) Proposition. Two minimal galleries with the same beginning and
end are equivalent.

Let 𝐺 = (𝐶0, . . . , 𝐶𝑛) and 𝐺′ = (𝐶′0, . . . , 𝐶
′
𝑛) with ends 𝐴 and 𝐵. We

proceed by induction over the length of the galleries. The case 𝑛 = 0 is
trivial and the induction hypothesis allows us to suppose that 𝐶1 =| 𝐶′1. Let
𝑀 and 𝑀 ′ be the walls which separate 𝐴 = 𝐶0 = 𝐶′0 from 𝐶1 and 𝐶′1, and
𝐶 = 𝐴.𝛥(𝑀X𝑀 ′). The walls 𝑀 and 𝑀 ′ separate 𝐴 from 𝐵. By reduction to
rank two (1.5)(iii), we deduce that any wall that separates 𝐴 from𝐶 separates
𝐴 from 𝐵.
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(
the drawing in 𝑉𝑀∩𝑀′ ; we omit writing 𝜋′

𝑀∩𝑀′ ( )
)

Let 𝐹 (resp. 𝐹′) be the minimal gallery from 𝐴 to𝐶 which passes through
𝐶1 (resp. 𝐶′1), and 𝐸 a minimal gallery from 𝐶 to 𝐵. The galleries 𝐹𝐸 and
𝐹′𝐸 are minimal and equivalent. The minimal galleries 𝐺 and 𝐹𝐸 (resp. 𝐺′
and 𝐹𝐸 ′) start with (𝐴,𝐶1) (resp. with (𝐴,𝐶′1)). The induction hypothesis
implies that they are equivalent, and (1.12) follows.
(1.13) Notation. (i) We denote by 𝑢(𝐴, 𝐵) the equivalence class of mini-
mal galleries from A to B.

(ii) For 𝐼 a set of walls in a chamber 𝐶, with intersection 𝑃, we set
𝛥(𝑃) = 𝑢

(
𝐶,𝐶.𝛥(𝑃)

)
(cf. (1.9.2)). For 𝐼 the set of all walls, we set

𝛥 = 𝑢(𝐶,−𝐶).
The benefit of this notation is in the ambiguity of 𝐶.

(1.14) Proposition. Let 𝐴 be a chamber and 𝒢 a set of classes of galleries
with bounded length starting at 𝐴. Suppose 𝒢 satisfies (i), the combination
of

(ia) (𝐴) ∈ 𝒢.
(ib) If 𝑔ℎ ∈ 𝒢, then 𝑔 ∈ 𝒢.
(ic) Suppose 𝑔 ends at 𝐵 and 𝑀, 𝑁 are walls of 𝐵. If 𝑔𝛥(𝑀) and 𝑔𝛥(𝑁)

are in 𝒢, then 𝑔𝛥(𝑀X𝑁) ∈ 𝒢.
Then we have
(ii) There is a (unique) class of galleries 𝑥 starting at 𝐴 such that

𝒢 = { 𝑔 | 𝑥 starts with 𝑔 } .
Uniqueness is clear: if 𝑥 begins with 𝑦 such that 𝑥 =| 𝑦, 𝑦 is of length

strictly less than 𝑥. Let 𝑥 be of maximum length in 𝒢. To be sure that this is
the correct choice of 𝑥, it suffices to prove the following assertion.
(∗) Suppose 𝑔 and 𝑀 are such that (a) 𝑥 starts with 𝑔 and (b) 𝑥 does not start

with 𝑔𝛥(𝑀), and 𝑔𝛥(𝑀) ∈ 𝒢. There also exist 𝑔′ and 𝑀 ′ satisfying (a)
and (b), with 𝑔′ strictly longer than 𝑔.
Since 𝑔𝛥(𝑀) ∈ 𝒢, the maximality of 𝑥 implies that 𝑔 =| 𝑥, therefore 𝑥

begins with 𝑔𝛥(𝑁) for suitable 𝑁 , necessarily distinct from 𝑀. From (ic),
we then have 𝑔𝛥(𝑀X𝑁) ∈ 𝒢.
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Since 𝑔𝛥(𝑀X𝑁) starts with 𝑔𝛥(𝑀), 𝑥 does not start with 𝑔𝛥(𝑀X𝑁).
Let (𝐶0, . . . , 𝐶𝑚) be the minimal gallery from 𝐴.𝑔 to 𝐴.𝑔𝛥(𝑀X 𝑁)

starting with (𝐴.𝑔, 𝐴.𝑔𝛥(𝑁)). Let 𝑖 (0 < 𝑖 < 𝑚) be the largest 𝑖 such that 𝑥
starts with 𝑔′ = 𝑔(𝐶0, . . . , 𝐶𝑖). Then, 𝑔′ and the wall 𝑀 ′ between 𝐶𝑖 and
𝐶𝑖+1 satisfy (a)(b).

(projection onto 𝑉𝑀∩𝑁 ).

(1.15) Proposition. Let 𝐴 be a chamber and ℬ a set of chambers. In
order for ℬ to satisfy (i), the combination of

(ia) 𝐴 ∈ ℬ.
(ib) If 𝐵 ∈ ℬ, then 𝐷 (𝐴, 𝐵) ∈ ℬ.
(ic) Suppose 𝑀 and 𝑁 are walls of a chamber 𝐵. If 𝐴 and 𝐵 are on

the same side of 𝑀 and 𝑁 , and if 𝐵.𝛥(𝑀) and 𝐵.𝛥(𝑁) are in ℬ, then
𝐵.𝛥(𝑀X𝑁) ∈ ℬ.

it is necessary and sufficient that
(ii) There is a (unique) chamber 𝐶 such that ℬ = 𝐷 (𝐴,𝐶).
It is easily verified that (ii)⇒ (i). To prove that (i)⇒ (ii), one uses (1.14)

to the set 𝒢 of 𝑢(𝐴, 𝐵) for 𝐵 ∈ ℬ (note that by (1.3) and (1.11) any gallery
𝐺 in the class 𝑔 such that 𝑢(𝐴, 𝐵) begins with 𝑔 is automatically minimal)
and we apply (1.4)(i)⇔(iii) to get the class of galleries 𝑥 = 𝑢(𝐴, 𝑋).

Applying criterion (1.15), we find:
(1.16) Corollary. Let 𝐴 and 𝐵 be adjacent chambers separated by a wall
𝑀 , and 𝐶 a chamber on the same side of 𝑀 as 𝐵. There is a 𝐶′ such that

𝐷 (𝐴,𝐶)X𝐷𝑀 (𝐵) = 𝐷 (𝐵,𝐶′).

(1.17) Corollary. (i) Let 𝐴,𝐶1, 𝐶2 be three chambers. There is a 𝐶 such
that

(1.17.1) 𝐷 (𝐴,𝐶) = 𝐷 (𝐴,𝐶1)X𝐷 (𝐴,𝐶2).
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(ii) Let 𝐴 and 𝐶1 be two chambers with 𝑀 a wall of 𝐴. There is a 𝐶′
such that
(1.17.2) 𝐷 (𝐴,𝐶′) = 𝐷 (𝐴,𝐶1)X𝐷𝑀 (𝐴).

In fact, (ii) is the special case of (i) for 𝐶2 = −(𝐴.𝛥(𝑀)).
(1.18) Lemma. Let 𝑀, 𝑀 ′, 𝑀 ′′ be three distinct walls of a chamber 𝐴,
𝐴1 = 𝐴.𝛥(𝑀), 𝐵 = 𝐴.𝛥(𝑀X𝑀 ′X𝑀 ′′), 𝐵′ = 𝐴.𝛥(𝑀X𝑀 ′), and 𝐵′′ =
𝐴.𝛥(𝑀X𝑀 ′′). For any chamber 𝐶, if 𝐵′ ∈ 𝐷 (𝐴1, 𝐶) and 𝐵′′ ∈ 𝐷 (𝐴1, 𝐶),
we have 𝐵 ∈ 𝐷 (𝐴1, 𝐶).

The facet 𝐹 of 𝐴 open in 𝑀X𝑀 ′X𝑀 ′′ is a facet of all the chambers
𝐴, 𝐴1, 𝐵, 𝐵′, and 𝐵′′. Applying (1.5)(iii), we can therefore go back to the
case where dim𝑉 = 3. Applying (1.17)(ii), we can assume furthermore that
𝐴1 and 𝐶 are on the same side of 𝑀. Let us make these assumptions, and
suppose that 𝐵′, 𝐵′′ ∈ 𝐷 (𝐴1, 𝐶). Since 𝑀 ′ (resp. 𝑀 ′′) separates 𝐴1 from
𝐵′ (resp. 𝐵′′), 𝐴1 and 𝐶 are separated by 𝑀 ′, 𝑀 ′′ (and on the same side of
𝑀); 𝐴 and 𝐶 are therefore separated by 𝑀 , 𝑀 ′ and 𝑀 ′′, and 𝐶 = −𝐴 = 𝐵.

The following key result is inspired by [4].
(1.19) Proposition. (i) Let 𝐴, 𝐵, 𝐶 be chambers, 𝐹 a gallery from 𝐴 to
𝐵, and 𝐺1, 𝐺2 two galleries from 𝐵 to 𝐶. If 𝐹𝐺1 ∼ 𝐹𝐺2, then 𝐺1 ∼ 𝐺2.

(ii) Likewise, if 𝐺1𝐸 ∼ 𝐺2𝐸 , then 𝐺1 ∼ 𝐺2.
(iii) Suppose 𝑔 is an equivalence class of galleries starting at 𝐴. There

is a chamber 𝐶 such that 𝑔 starts with 𝑢(𝐴, 𝐵) if and only if 𝐵 ∈ 𝐷 (𝐴,𝐶).
One can prove (ii) from (i) by passing to opposite galleries.
Let 𝐺 = (𝐶0, . . . , 𝐶𝑛) and 𝐺′ = (𝐶′0, . . . , 𝐶

′
𝑛) be two galleries of

length 𝑛 with the same ends. If 𝑛 ≧ 1, we set 𝐺1 = (𝐶1, . . . , 𝐶𝑛) and
𝐺′1 = (𝐶′1, . . . , 𝐶

′
𝑛). If moreover 𝐶1 =| 𝐶′1, we let 𝑀 and 𝑀 ′ be the walls

which separate 𝐶0 = 𝐶′0 from 𝐶1 and 𝐶′1, and we set 𝐴 = 𝐶0.𝛥(𝑀X𝑀 ′).
Consider the following relation 𝑅𝑛 (𝐺,𝐺′) between galleries 𝐺,𝐺′ as above.

𝑅𝑛 (𝐺,𝐺′) ⇔ we have either
𝛼) 𝑛 = 0;
𝛽) 𝑛 =| 0, 𝐶1 = 𝐶′1, and 𝐺1 ∼ 𝐺′1;
𝛾) 𝑛 =| 0, 𝐶1 =| 𝐶′1, and there is a gallery 𝐹 from 𝐴 to 𝐶𝑛 = 𝐶′𝑛 such that

𝐺1 ∼ 𝑢(𝐶1, 𝐴).𝐹 and 𝐺′1 ∼ 𝑢(𝐶
′
1, 𝐴).𝐹.

We will prove the following assertion by induction on 𝑛.
(𝐴𝑛) 𝑅𝑛 is an equivalence relation.
Let us assume (𝐴𝑖) for 𝑖 < 𝑛 and prove (1.19.1) through (1.19.3) below.

(1.19.1) For galleries of length 𝑖 < 𝑛, 𝑅𝑖 (𝐺,𝐺′) ⇔ 𝐺 ∼ 𝐺′.
It’s trivial that 𝑅𝑖 (𝐺,𝐺′) ⇒ 𝐺 ∼ 𝐺′, and, with the notation of (1.10), if

𝐺 ∼ 𝐺′, we have 𝑅𝑖 (𝐺 𝑗 , 𝐺 𝑗+1).
(1.19.2) The assertion (i) for 𝐹𝐺1 of length < 𝑛 holds.

This follows from (1.19.1) and the second case of the definition of 𝑅𝑖 .
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(1.19.3) The assertion (iii) holds for 𝑔 of length < 𝑛.
This follows from (1.15) applied to the set ℬ of chambers 𝐵 such that 𝑔

starts with 𝑢(𝐴, 𝐵): The condition (ic) of (1.15) is shown to hold with the
help of (1.19.2), of (1.18), and the third clause in the definition of 𝑅.

It remains to prove that if 𝐺, 𝐺′ and 𝐺′′ are three galleries of length 𝑛
from 𝐴 to 𝐶 and that 𝑅𝑛 (𝐺,𝐺′) and 𝑅𝑛 (𝐺,𝐺′′), we have 𝑅𝑛 (𝐺′, 𝐺”). If
𝑛 = 0, 𝐶1 = 𝐶′1, or 𝐶1 = 𝐶′′1 , this is trivial.

For 𝑛 > 0, let 𝑀, 𝑀 ′, 𝑀 ′′ denote the walls which separate 𝐴 = 𝐶0 =

𝐶′0 = 𝐶′′0 from 𝐶1, 𝐶′1, and 𝐶′′1 . We distinguish two cases

Case 1. 𝐶1 =| 𝐶′1 = 𝐶′′1 . Let 𝐵 = 𝐴.𝛥(𝑀X𝑀 ′). By our assumptions,

(𝐶1, . . . , 𝐶𝑛) ∼ 𝑢(𝐶1, 𝐵)𝐹′ ∼ 𝑢(𝐶1, 𝐵)𝐹′′,
(𝐶′1, . . . , 𝐶

′
𝑛) ∼ 𝑢(𝐶1, 𝐵)𝐹′,

(𝐶′′1 , . . . , 𝐶
′′
𝑛 ) ∼ 𝑢(𝐶′′1 , 𝐵)𝐹

′′.

From (1.19.2), we conclude that 𝐹′ ∼ 𝐹′′, and therefore that 𝑅𝑛 (𝐺′, 𝐺′′).
Case 2. 𝐶1 =| 𝐶′1 =| 𝐶′′1 =| 𝐶1. Let 𝐵1 = 𝐴.𝛥(𝑀 ′X 𝑀 ′′), 𝐵′ =

𝐴.𝛥(𝑀X𝑀 ′), 𝐵′′ = 𝐴.𝛥(𝑀X𝑀 ′′) and 𝐵 = 𝐴.𝛥(𝑀X𝑀 ′X𝑀 ′′). We have

𝐺1 = (𝐶1, . . . , 𝐶𝑛) ∼ 𝑢(𝐶1, 𝐵)𝐹′ ∼ 𝑢(𝐶1, 𝐵)𝐹′′,
𝐺′1 = (𝐶′1, . . . , 𝐶

′
𝑛) ∼ 𝑢(𝐶1, 𝐵)𝐹′,

𝐺′′1 = (𝐶′′1 , . . . , 𝐶
′′
𝑛 ) ∼ 𝑢(𝐶′′1 , 𝐵)𝐹

′′.

so that the class 𝑔1 of 𝐺1 starts with 𝑢(𝐶1, 𝐵
′) and 𝑢(𝐶1.𝐵

′′). It then
follows from (1.19.3) and Lemma (1.18) that 𝑔1 starts with 𝑢(𝐶1, 𝐵): 𝐺1 ∼
𝑢(𝐶1, 𝐵)𝐹. From (1.19.2), we have 𝐹′ ∼ 𝑢(𝐵′, 𝐵)𝐹 and 𝐹′′ ∼ 𝑢(𝐵′′, 𝐵)𝐹,
thus 𝐺1 ∼ 𝑢(𝐶1, 𝐵)𝐹, 𝐺′1 ∼ 𝑢(𝐶

′
1, 𝐵)𝐹 and 𝐺′′1 ∼ 𝑢(𝐶

′′
1 , 𝐵)𝐹. Therefore,

𝐺′1 ∼ 𝑢(𝐶
′
1, 𝐵1) 𝑢(𝐵1, 𝐵) 𝐹

𝐺′′1 ∼ 𝑢(𝐶
′′
1 , 𝐵1) 𝑢(𝐵1, 𝐵) 𝐹,

so 𝑅𝑛 (𝐺′, 𝐺′′).

(picture in the unit sphere of 𝑉𝑀∩𝑀′∩𝑀′′ ).
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(1.20) Corollary. Conditions (i) and (ii) of (1.14) are equivalent.
We suppose (ii) and prove (ic). Under the hypotheses of (ic), if 𝑥 = 𝑔ℎ

(ℎ starting at 𝐵), it follows from (1.19)(i) that ℎ begins with 𝛥(𝑀) and
𝛥(𝑁). Let 𝐶 be the chamber guaranteed by (1.19)(iii) for ℎ. Since 𝑀 and
𝑁 separate 𝐵 from 𝐶, 𝜋′

𝑀∩𝑁 (𝐶) can only be 𝜋′
𝑀∩𝑁 (𝐵).𝛥 and (ic) follows

from (1.5)(iii).

(1.21) Corollary. For any chamber 𝐴, let 𝑛(𝐴, 𝑖) be the number of classes
of galleries starting at 𝐴 with length 𝑖. Set

𝑓𝐴 =
∞∑︁
0
𝑛(𝐴, 𝑖)𝑡𝑖 ∈ ℤ[[𝑡]] .

For each chamber 𝐴, and for 𝑃 ranging over the intersection of walls of 𝐴
(including {0} and 𝑉), we have∑︁

𝑃

(−1)codim(𝑃) 𝑡𝑑 (𝐴,𝐴.𝛥(𝑃) ) 𝑓𝐴.𝛥(𝑃) = 1.

This means that
a) the number of classes of galleries of length 𝑖 starting at 𝛥(𝑃) is

𝑛(𝐴.𝛥(𝑃), 𝑖 − 𝑑 (𝐴, 𝐴.𝛥(𝑃))).
(
(1.19)(iii)

)
.

b) the classes of galleries which start at 𝛥(𝑃) and 𝛥(𝑄) begin with
𝛥(𝑃X𝑄)

(
follows from (1.19)(iii)

)
.

(1.22) Algorithm. Let 𝐺 = (𝐴0, . . . , 𝐴𝑛) be a gallery of length 𝑛 ≧ 1,
𝐺1 = (𝐴1, . . . , 𝐴𝑛), 𝑀 the wall which separates 𝐴0 and 𝐴1, 𝐶 the chamber
whose existence is guaranteed by (1.19)(iii) (for 𝐺) and 𝐶1 the analogous
chamber for 𝐺1. We can easily compute 𝐶 by induction with the following
formula

(
cf. (1.16)

)
(1.22.1) 𝐷 (𝐴1, 𝐶) = 𝐷𝑀 (𝐴1)X𝐷 (𝐴1, 𝐶1).

Since 𝐴1 ∈ 𝐷 (𝐴,𝐶), 𝑀 indeed separates 𝐴 from 𝐶 and 𝐶 ∈ 𝐷𝑀 (𝐴1).
According to (1.19)(i), we also have 𝐷 (𝐴1, 𝐶) Ă 𝐷 (𝐴1, 𝐶1), whence the
inclusion Ă. Finally, if 𝐵 ∈ 𝐷𝑀 (𝐴1)X𝐷 (𝐴1, 𝐶1), 𝐺1 starts with 𝑢(𝐴1, 𝐵)
and 𝐺 starts with 𝑢(𝐴, 𝐴1).𝑢(𝐴1, 𝐵) = 𝑢(𝐴, 𝐵), whence (1.22.1).
(1.23) Corollary. Let 𝐺 and 𝐻 be two composable galleries. Let 𝐴 be
the start of 𝐺, 𝐵 that of 𝐻, and 𝐶 guaranteed by (1.19)(iii): we have
𝐻 ∼ 𝑢(𝐵,𝐶).𝐻′. So, for any chamber 𝐷, for the class of 𝐺𝐻 to start with
𝑢(𝐴, 𝐷), it is necessary (and sufficient) that 𝐺𝑢(𝐵,𝐶) start with 𝑢(𝐴, 𝐷).
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(1.24) Proposition. Let 𝐴 be a chamber, 𝑃 an intersection of walls of 𝐴,
𝐹 = 𝐹 (𝑃) (1.6) and 𝑔 an equivalence class of galleries starting at 𝐴. There
exists a class of galleries 𝑔′ of (𝑉𝑃 ,ℳ𝑃), of source 𝜋−1

𝐹
(𝐴), such that for

each gallery 𝐻 of (𝑉𝑃 ,ℳ𝑃), 𝑔 starts with 𝜋𝐹 (𝐻) is and only if 𝑔′ starts
with 𝐻.

Let 𝒢 be a set of classes of galleries ℎ of source 𝜋−1
𝐹
(𝐴) in (𝑉𝑃 ,ℳ𝑃)

such that 𝑔 starts with 𝜋𝐹 (ℎ). We apply (1.14) to (𝑉𝑃 ,ℳ𝑃) and to 𝒢.
Condition (i) from (1.19) is satisfied

(
cf. the proof of (1.20)

)
, and (1.24)

follows from (1.14)(ii).
(1.25) We can regard the set of galleries as the set of arrows of a category
Gal0 (𝑉,ℳ) with the chambers for objects. Likewise, the equivalence classes
of galleries are the arrows of a quotient category Gal+ (𝑉,ℳ). Let 𝐴, 𝐵, and
𝐶 be three chambers, 𝐸 a gallery from 𝐴 to 𝐵, and 𝐹 a gallery from 𝐵 to 𝐶.
Although the general conventions in categories are different, we continue to
let 𝐸𝐹 denote the composition of 𝐸 and 𝐹. The law ∗ (resp. 𝐺 → −𝐺) is an
antiequivalence (resp. an equivalence) of Gal0 (𝑉,ℳ) or Gal+ (𝑉,ℳ) with
itself, inducing the identity (resp. 𝐶 → −𝐶) on the set of objects.

When no confusion can be had, we write simply Gal0 and Gal+
for Gal0 (𝑉,ℳ) and Gal+ (𝑉,ℳ) (or for a category Gal0 (𝑉𝑃 ,ℳ𝑃) or
Gal+ (𝑉𝑃 ,ℳ𝑃)). By abuse of language, we often call galleries the arrows of
Gal+.
(1.26) Lemma. (i) In Gal+, for each gallery 𝑔, we have

𝑔𝛥 = 𝛥(−𝑔).

(ii) For each 𝑔 and ℎ starting at 𝐴 in Gal+, there exists an 𝑛 such that
𝑔𝛥𝑛 starts with ℎ. If ℎ is composed of 𝑘 galleries 𝑢(𝐴𝑖 , 𝐴𝑖+1), we can take
𝑛 = 𝑘 .

Proceeding by induction, we first prove (i) for 𝑔 of length one. For
𝑔 = (𝐵,𝐶), we have

𝑔𝛥 = 𝑢(𝐵,𝐶)𝑢(𝐶,−𝐶) = 𝑢(𝐵,𝐶)𝑢(𝐶,−𝐵)𝑢(−𝐵,−𝐶)
= 𝑢(𝐵,−𝐵)𝑢(−𝐵,−𝐶) = 𝛥(−𝑔).

For each chamber 𝐵, 𝛥 = 𝑢(𝐴,−𝐴) starts with 𝑢(𝐴, 𝐵). Hence, (ii) can
be deduced from (i) by induction on 𝑘 .

The following proposition follows immediately from (1.26), via transfor-
mation by ∗ and (1.19)(i), (ii).
(1.27) Proposition. (i) In Gal+, the set of all arrows gives rise to a
calculation of left and right fractions.
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(ii) Let Gal(𝑉,ℳ), or simply Gal, be the category ( a groupoid ) derived
from Gal+ by adding inverses to each arrow: we call images of arrows of
Gal+ in Gal positive. The canonical functor from Gal+ to Gal is faithful, and
each arrow 𝑔 of Gal can be put in the form 𝑔 = 𝑔1𝛥

−𝑛 = 𝛥−𝑛𝑔2 with 𝑔1 and
𝑔2 positive.

If a category 𝐶 has only one object 𝐴 and if the monoid Hom(𝐴, 𝐴) is
reduced, then the set of all arrows of 𝐶 admits a calculation of left and right
fractions, meaning that Hom(𝐴, 𝐴) satisfies the left and right condition of
Öre. The “theory of calculating fractions” is used in (1.27) and below is an
immediate generalization of the theory of Öre to embed a monoid in a group.
(1.28) For each wall 𝑀 , the number of times each 𝑔 in Gal+ crosses 𝑀 is
well defined (1.11). This function of 𝑔 is extended by additivity to 𝑔 ∈ Gal.
More generally, for each intersection 𝑃 of walls, we may use the universal
property of Gal to define functors

𝜋′𝑃 : Gal(𝑉,ℳ) → Gal(𝑉𝑃 ,ℳ𝑃).
(1.29) Let 𝐴 be a chamber, 𝑃 an intersection of walls of 𝐴, and 𝐹 = 𝐹 (𝑃)
(1.6). The function 𝜋𝐹 induces a functor

(1.29.1) 𝜋𝐹 : Gal0 (𝑉𝑃 ,ℳ𝑃) → Gal0 (𝑉,ℳ).

The image of this functor is stable under equivalence, and it induces a faithful
functor

(1.29.2) 𝜋𝐹 : Gal+ (𝑉𝑃 ,ℳ𝑃) → Gal+ (𝑉,ℳ).

From the theory of the calculus of fractions and from (1.19)(i), we have
(1.30) Proposition. Under the previous hypotheses, the functor deduced
from (1.29.2)

𝜋𝐹 : Gal(𝑉𝑃 ,ℳ𝑃) → Gal(𝑉,ℳ)
is faithful.
(1.31) Proposition. Let 𝐶 be a chamber, 𝐼 and 𝐽 two sets of walls of 𝐶,
𝐾 = 𝐼X 𝐽, 𝑃, 𝑄, and 𝑅 the intersections of the walls of 𝐼, 𝐽, and 𝐾, and
𝐹 (𝑃), 𝐹 (𝑄), and 𝐹 (𝑅) the corresponding facets in 𝐶 (1.6). The facet 𝐹 (𝑅)
is the smallest facet containing 𝐹 (𝑃) and 𝐹 (𝑄). In the groupoid Gal(𝑉,ℳ),
we have
𝜋𝐹 (𝑃)

(
Gal(𝑉𝑃 ,ℳ𝑃)

)
X𝜋𝐹 (𝑄)

(
Gal(𝑉𝑄,ℳ𝑄)

)
= 𝜋𝐹 (𝑅)

(
Gal(𝑉𝑅,ℳ𝑅)

)
A chamber admitting 𝐹 (𝑃) and 𝐹 (𝑄) as facets also admits 𝐹 (𝑅) as a

facet. This proves (1.31) for the objects.
Let 𝑔 ∈ HomGal (𝐴, 𝐵), and suppose that

𝑔 = 𝜋𝐹 (𝑃) (𝑔′1) = 𝜋𝐹 (𝑄) (𝑔
′
2).
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From (1.27)(ii), we have

𝑔′1 = 𝛥(𝑃)−𝑛𝑔′′1 and 𝑔′2 = 𝛥(𝑄)−𝑛𝑔′′2

with 𝑔′′
𝑖

positive, for 𝑛 ≧ 0 large enough. Let 𝑔1 = 𝜋𝐹 (𝑃)𝑔
′′
1 and 𝑔2 =

𝜋𝐹 (𝑄)𝑔
′′
2 .

From (1.26)(ii) (transformed by ∗), 𝛥𝑛𝛥(𝑃)−𝑛 is positive; in Gal+ (𝑉,ℳ)
we have

(1.31.1)
(
𝛥𝑛𝛥(𝑃)−𝑛

)
𝑔1 =

(
𝛥𝑛𝛥(𝑄)−𝑛

)
𝑔2.

(1.31.2) Lemma. If ℎ ∈ HomGal+ (𝐴, 𝐵) starts with
(
𝛥𝑛𝛥(𝑃)−𝑛

)
or

(
𝛥𝑛𝛥(𝑄)−𝑛

)
,

then ℎ begins with
(
𝛥𝑛𝛥(𝑅)−𝑛

)
.

We deduce (1.31) from (1.31.2). From (1.31.2), we have(
𝛥𝑛𝛥(𝑃)−𝑛

)
𝑔1 =

(
𝛥𝑛𝛥(𝑄)−𝑛

)
𝑔2 =

(
𝛥𝑛𝛥(𝑅)−𝑛

)
𝑔3

with 𝑔3 positive. We therefore have 𝑔 = 𝛥(𝑅)−𝑛𝑔3. The positive gallery
𝑔3 = 𝛥(𝑅)𝑛𝑔 belongs to the image of 𝜋𝐹 (𝑃) and of 𝜋𝐹 (𝑄) . Thus (1.28) it
crosses each wall which doesn’t contain 𝑃 or 𝑄, i.e. doesn’t contain 𝑅, zero
times. It therefore belongs to the image of 𝜋𝐹 (𝑅) .

We now prove (1.31.2). Let 𝐴(𝑃) = 𝐴.𝛥.𝛥(𝑃), and for each of 𝑄 and 𝑅.
The gallery 𝛥𝛥(𝑃)−1 when starting at 𝐴 is 𝑢(𝐴, 𝐴(𝑃)); starting at 𝐴(𝑃) it is
𝑢(𝐴(𝑃), 𝐴). From (1.26)(i) it follows that 𝛥𝛥(𝑃) = 𝛥(𝑃)𝛥. We then have
(1.31.3)

𝛥𝑛𝛥(𝑃)−𝑛 = 𝑢(𝐴, 𝐴(𝑃)).𝑢(𝐴(𝑃), 𝐴) 𝑢(𝐴, 𝐴(𝑃)) . . . (𝑛 factors).

(1.31.4) Lemma. 𝐴(𝑅) ∈ 𝐷 (𝐴(𝑃), 𝐴(𝑄)).
With the notation of (1.2), ℳ(𝐴𝛥, 𝐴(𝑃)) is the set of walls which

contain 𝑃 and ℳ(𝐴𝛥, 𝐴(𝑄)) is the set of walls which contain 𝑄. From
(1.2), ℳ(𝐴(𝑃), 𝐴(𝑄)) is the set of walls which contain 𝑃 or 𝑄, but not 𝑅,
that is to say ℳ(𝐴(𝑃), 𝐴(𝑅))Yℳ(𝐴(𝑄), 𝐴(𝑅)), and we apply (1.4).

By (1.19)(iii), a gallery class which starts with 𝛥𝛥(𝑃)−1 (𝑛 > 0) and
𝛥𝛥(𝑄)−1 thus also starts with 𝛥𝛥(𝑅)−1, and (1.31.2) follows by induction
on
(1.31.5) Lemma. Let 𝑃 and 𝑅 be intersections of walls of a chamber 𝐴,
with 𝑃 Ă 𝑅. Let ℎ be in Gal+ and start with 𝐴. If ℎ starts with both 𝛥𝑛𝛥(𝑃)−𝑛
(𝑛 > 0) and with 𝛥𝛥(𝑅)−1, then ℎ starts with

(
𝛥𝛥(𝑅)−1) (𝛥𝛥(𝑃)−1)𝑛−1.

We can suppose that 𝑛 ≧ 2. Set ℎ =
(
𝛥𝛥(𝑃)−1)ℎ′. With the pre-

vious notation, ℎ′ also starts with both 𝛥𝛥(𝑃)−1 = 𝑢(𝐴(𝑃), 𝐴) and with
𝑢(𝐴(𝑃), 𝐴(𝑅)). We apply (1.19)(iii).

The chamber𝐶 of loc. cit.[?] is also separated from 𝐴(𝑃) by each wall 𝑀
which separates 𝐴(𝑃) from 𝐴 (i.e. 𝑀 ⊃| 𝑃) and 𝐴(𝑃) from 𝐴(𝑅) (i.e. 𝑀 ⊃ 𝑃
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and 𝑀 ⊃| 𝑅). The chamber 𝐶 is thus not separated from 𝐴(𝑃)𝛥 by the walls
𝑀 ⊃ 𝑅, and 𝐶 ∈ 𝐷

(
𝐴(𝑃).𝛥, 𝐴(𝑃).𝛥𝛥(𝑅)

)
. Since then, ℎ′ starts both with(

𝛥𝛥(𝑅)−1) and with
(
𝛥𝛥(𝑃)−1)𝑛−1. Proceeding by induction on 𝑛, we then

deduce that ℎ′ starts with
(
𝛥𝛥(𝑅)−1) (𝛥𝛥(𝑃)−1)𝑛−2, so that ℎ starts with(

𝛥𝛥(𝑃)−1) (𝛥𝛥(𝑅)−1) (𝛥𝛥(𝑃)−1)𝑛−2 and we conclude by noting

𝛥𝛥(𝑃)−1𝛥𝛥(𝑅)−1 = 𝛥𝛥(𝑅)−1𝛥𝛥(𝑃)−1.

(1.32) Proposition. For a facet 𝐹 of a chamber 𝐶, generating an intersec-
tion of walls 𝑃, we have

𝜋−1
𝐹

(
Gal+ (𝑉,ℳ)

)
= Gal+ (𝑉𝑃 ,ℳ𝑃) Ă Gal(𝑉𝑃 ,ℳ𝑃).

Suppose that 𝜋𝐹 (𝛥−𝑛𝑔) = ℎ is in Gal+ (𝑉,ℳ). We then have 𝜋𝐹 (𝑔) =
𝛥(𝑃)𝑛ℎ and, by (1.28), each gallery 𝐻 representing ℎ does not cross the
walls containing 𝐹. We thus have ℎ = 𝜋𝐹 (ℎ1) with ℎ1 in Gal+ (𝑉𝑃 ,ℳ𝑃) and
we conclude by (1.30).

§ 2. Buildings
(2.1) Let (𝑉,ℳ) be as in §1

(
satisfying (1.8)

)
and 𝑟 = dim𝑉 . Let 𝑆 be

the sphere of radius one in 𝑉 , for any Euclidean structure on 𝑉 (one could
more intrinsically put 𝑆 = 𝑉 − {0} /ℝ∗+). The hyperplanes 𝑀 ∈ ℳ cut
a triangulation of 𝑆, and we will still use 𝑆 to denote the corresponding
simplicial space and its geometric realization. We will carry over the
terminology used for 𝑉 (chambers, facets, adjacency, galleries, . . . ).
(2.2) Choose a “fundamental chamber” 𝐴0 in 𝑆. We denote by 𝐼+ the
space constructed below; it depends on 𝑉 , ℳ, and 𝐴0, and is equipped with
𝑞 : 𝐼+ → 𝑆.

a) Let 𝒵+ be the set of equivalence classes of galleries starting at 𝐴0,

𝒵+ =
∐
𝐵

HomGal+ (𝐴0, 𝐵).

b) Let 𝑍 be the disjoint union, indexed by 𝑔 ∈ 𝒵+, of the closed simplices
of 𝑆 corresponding to the open simplices of dimension 𝑟 − 1 at which 𝑔 ends,

𝑍+ =
∐
𝑔∈𝒵+
(end of 𝑔)− .

Let 𝑞′ be the obvious map from 𝑍+ onto 𝑆.
c) 𝐼+ (endowed with 𝑞) is a quotient of 𝑍+ (endowed with 𝑞′). If 𝐺 is a

gallery from 𝐴0 to 𝐵 and 𝐶 is a chamber adjacent to 𝐵, we glue (end of 𝑔)−
and (end of 𝑔(𝐵𝐶))− along the common closed face of their images in 𝑆.
(2.3) The space 𝐼+ is decomposed into facets, images of facets of 𝑍+ and
bijectively mapped with a facet of 𝑆. Its chambers (resp. faces, resp. vertices)
are the facets of dimension 𝑟 − 1 (resp. 𝑟 − 2, resp. 0).
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The vertices of a facet 𝐹 are the vertices contained in the closure 𝐹 of
𝐹. The chambers of 𝐼+ are indexed by 𝒵+; we let 𝐴̃0.𝑔 denote the chamber
indexed by 𝑔 and 𝐴̃0 the chamber indexed by (𝐴0).

Let 𝑔 ∈ HomGal+ (𝐴0, 𝐴), 𝐴̃ = 𝐴̃0.𝑔, and 𝐻 = (𝐶0, . . . , 𝐶𝑛) be a gallery
from 𝐴 to 𝐵 of class ℎ.

We set
𝐴̃.ℎ = 𝐴̃0.𝑔ℎ.

The chambers 𝐴̃.(𝐶0, . . . , 𝐶𝑖) (0 ≦ 𝑖 ≦ 𝑛) form a gallery in 𝐼+. We will call
the galleries obtained thusly positive.
(2.4) Lemma. Let 𝐹 be a facet of 𝑆, 𝐴 and 𝐵 two chambers of 𝑆 with 𝐹
as a facet, 𝑔 ∈ HomGal+ (𝐴0, 𝐴), and ℎ = HomGal+ (𝐴0, 𝐵). The following
conditions are equivalent

(a) in 𝐼+, the facets 𝑞−1 (𝐹) of 𝐴̃0.𝑔 and 𝐴̃0.ℎ coincide;
(b) 𝑔−1ℎ ∈ HomGal (𝐴, 𝐵) is in 𝜋𝐹 (Gal);
(c) there exists 𝑔1 and ℎ1 in 𝜋𝐹 (Gal+) such that 𝑔𝑔1 = ℎℎ1.

The condition (b) is an equivalence relation between galleries of 𝐴0
starting at a chamber which has 𝐹 as a facet. It follows that (a)⇒(b). That
(b)⇒(c) follows from (1.26)(i). Finally, (c)⇒(a) follows trivially from the
definitions.

From (2.4) (a)⇔(b) and (1.31), we immediately deduce the following.
(2.5) Proposition. Each facet of 𝐼+ is uniquely determined by the set of
its vertices. We can therefore write 𝐼+ as the geometric realization of the
following simplicial complex.

a) For a vertex 𝑥 of 𝑆, let 𝒢(𝑥) be the set of 𝑔 in Gal+ from 𝐴0 to a
chamber with 𝑥 as a vertex. Let 𝒢(𝑥)/𝜋𝑥 be the quotient of 𝒢(𝑥) by the
equivalence relation (2.4)(b) (for 𝐹 = 𝑥). Then, the set of vertices is∐

𝑥

𝒢(𝑥)/𝜋𝑥 .

b) For a set 𝐸 of vertices to span a simplex, it is necessary and sufficient
that there exist a gallery 𝑔 starting at 𝐴0 such that for 𝑦 ∈ 𝐸 , 𝑔 is in 𝒢(𝑞𝑦)
and 𝑦 is the image of 𝑔 in 𝒢(𝑞𝑦)/𝜋𝑞𝑦 .
(2.6) Proposition. Let 𝐹 be a facet of 𝐼+. There exists a class of galleries 𝑔
such that, in order for 𝐹 to be a facet of a chamber 𝐵 = 𝐴̃0.ℎ, it is necessary
and sufficient that we have

ℎ = 𝑔𝜋𝐹 (ℎ′)

for suitable ℎ′ in Gal+.
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Let us take 𝑔 to be a gallery of minimal length such that 𝐹 is a facet
of 𝐴 = 𝐴̃0.𝑔. Let 𝐵 = 𝐴̃0.ℎ be a chamber with 𝐹 as a facet. Following
(2.4)(a)⇔(c), there exist galleries ℎ1 and ℎ2 in (𝑉𝑞𝐹 ,ℳ𝑞𝐹), with

𝑔𝜋𝐹 (ℎ1) = ℎ𝜋𝐹 (ℎ2).

Let us apply the transformation ∗ of (1.24). Given the minimality of 𝑔, we
find that ℎ1 ends with ℎ2: ℎ1 = ℎ′ℎ2. Following (1.19)(ii), we have

𝑔𝜋𝐹 (ℎ′) = ℎ

and this proves (2.6).
(2.7) Notation. Let 𝐴 be a chamber of 𝐼+. We let 𝑆(𝐴) denote the union
of the closed chambers

(
𝐴.(𝑞𝐴, 𝐵)

)− for 𝐵 a chamber of 𝑆.
One verifies that 𝑞 |𝑆(𝐴) is an isomorphism between 𝑆(𝐴) and 𝑆.

(2.8) Definition. 𝐼+ is the space derived from 𝐼+ by ”filling” the spheres
𝑆(𝐴).

To be precise, let 𝐵𝑟 be a ball whose boundary is 𝑆. When we want to
work simplicially, we will take 𝐵𝑟 to be the cone on the simplicial space 𝑆.
We define 𝐼+ from 𝐼+ by attaching a family of copies 𝑏(𝐴) of 𝐵𝑟 , the family
indexed by the set of chambers of 𝐼+. The attaching maps are

𝜕𝑏(𝐴) ∼−−−→ 𝑆

𝑞∼←−−− 𝑆(𝐴).

The attaching maps are simplicial, so that 𝐼+ appears again like the geometric
realization of a simplicial complex (whose vertices are those of 𝐼+ and the
“centers of the balls”). The space 𝐼+ is equipped with an obvious (simplicial)
map

𝑞 : 𝐼+ → 𝐵𝑟 .

(2.9) Proposition. The space 𝐼+ is contractible.
The space 𝐼+ is therefore a bouquet of the spheres 𝑆(𝐴).
Let (𝐼+)𝑛 be the union of the closed chambers ( 𝐴̃0.𝑔)− for 𝑔 of length ≦ 𝑛,

and (𝐼+)𝑛 the union of (𝐼+)𝑛 and the set of balls 𝑏(𝐴) for 𝜕𝑏(𝐴) Ă (𝐼+)𝑛.
We have (𝐼+)0 = 𝐴−0 (contractible), and

𝐼+ = lim−−→ (𝐼+)𝑛.

The proposition follows from
(2.9.1) Lemma. (𝐼+)𝑛 is a deformation retract of (𝐼+)𝑛+1.
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We must construct a continuous family (𝜑𝑡 )0≦𝑡≦1 of continuous maps of
(𝐼+)𝑛+1 to itself, with 𝜑0 = Id, 𝜑𝑡 | (𝐼+)𝑛 = Id, and 𝜑1

(
(𝐼+)𝑛+1

)
= (𝐼+)𝑛.

Let 𝐴 = 𝐴0.𝑔, a chamber of (𝐼+)𝑛+1 which is not in (𝐼+)𝑛, and let 𝐹 be a
facet of 𝐴.
(2.9.2) Lemma. Suppose there is a chamber 𝐵 = 𝐴̃0.ℎ in (𝐼+)𝑛+1, distinct
from 𝐴, of which 𝐹 is a facet. There exists another chamber 𝐵′ = 𝐴̃0.ℎ

′ in
(𝐼+)𝑛, and a wall 𝑀 of 𝑞𝐵′, containing 𝑞𝐹, such that 𝐴 = 𝐵′.𝛥(𝑀).

Let 𝑔0 be the gallery considered in (2.6). We have
𝑔 = 𝑔0 𝜋𝐹 (𝑔1) and ℎ = 𝑔0 𝜋𝐹 (ℎ1).

The hypotheses imply that the length lg(𝑔1) =| 0 (otherwise, since 𝐴 =| 𝐵,
we would have lg(ℎ) > lg(𝑔) = 𝑛 + 1). For a suitable wall 𝑀 of 𝑞𝐴, we also
have 𝑔1 = ℎ′𝛥(𝑀), and we let 𝐵′ = 𝐴̃0ℎ

′.
For the closed chamber 𝐴− , 𝐴−X (𝐼+)𝑛 is thus a union of a (nonempty)

set of closed faces, and, in (𝐼+)𝑛+1, the points of 𝐴− −
(
𝐴−X (𝐼+)𝑛

)
belong

solely to the closed chamber 𝐴− .
We break into two cases

Case 1. 𝐴−X (𝐼+)𝑛 =| 𝜕𝐴− .
In this case, there is no sphere 𝑆(𝐵) with

𝐴 Ă 𝑆(𝐵) Ă (𝐼+)𝑛+1.
For 𝜑𝑡 |𝐴− , we take a collapsing of 𝐴− onto 𝐴−X (𝐼+)𝑛.

Case 2. 𝐴−X (𝐼+)𝑛 = 𝜕𝐴− .
Let 𝐴 = 𝐴̃0.𝑔. For each wall 𝑀 of 𝑞𝐴, the result that 𝑔 ends with 𝛥(𝑀)

follows from (2.7.2).
According to

(
(1.19)(iii)

)
, 𝑔 therefore ends with 𝛥: we have 𝐴 = 𝐵.𝛥

with 𝐵 uniquely determined by 𝐴, following (1.19)(ii). When passing from
(𝐼+)𝑛+1 to (𝐼+)𝑛, 𝐴 and the interior of the ball 𝑏(𝐵) disappear. For 𝜑𝑡 |𝑏(𝐵),
we take a collapsing of 𝑏(𝐵) onto 𝑆(𝐵) − 𝐴.

From what was seen in case 1, any ball that disappears is of the previous
type. This completes the construction of 𝜑𝑡 and proves (2.7).
(2.10) The space 𝐼, endowed with 𝑞 : 𝐼 → 𝑆 is defined as 𝐼+, replacing
Gal+ with Gal.

a) We set 𝒵 =
∐
𝐵

HomGal (𝐴0, 𝐵).

b) We set 𝑍 =
∐
𝑔∈𝒵
(end of 𝑔)− .

c) Let 𝑞′ be the obvious map from 𝑍 onto 𝑆. The space 𝐼, endowed
with 𝑞, is a quotient of 𝑍 endowed with 𝑞′. For 𝑔 ∈ 𝒵 with end 𝐵 and 𝐶 a
chamber adjacent to 𝐵, we glue (end of 𝑔)− and (end of 𝑔(𝐵𝐶))− along the
common face of their closure of their images in 𝑆. In other words, if two
chambers 𝐵 and 𝐶 have a common facet 𝐺, if 𝑔 ∈ HomGal (𝐴0, 𝐵) and if
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ℎ ∈ HomGal (𝐴0, 𝐶), then, in 𝐼, the closed facets 𝑞′−1 (𝐹)− of (end of 𝑔)−
and of (end of ℎ)− are identified if and only if

ℎ𝑔−1 ∈ 𝜋𝐹HomGal
(
𝜋−1
𝐹 (𝐵), 𝜋−1

𝐹 (𝐶)
)
.

(2.11) As for 𝐼+, we define the open or closed chambers, faces, facets of 𝐼.
We define 𝐴̃0, and 𝐴̃.ℎ (for 𝐴̃ a chamber and ℎ in Gal starting at 𝑞𝐴̃) as in
(2.3). The analogue of (2.4)(a)⇔(b) is trivially true here. As in (2.5), we
then infer from (1.31) that each facet of 𝐼 is uniquely determined by its set of
vertices, and 𝐼 appears as the geometric realization of a simplicial complex
which admits a description of type (2.5). For each chamber 𝐴 of 𝐼, we define
as in (2.7) a sphere 𝑆(𝐴); 𝑞 induces an isomorphism of 𝑆(𝐴) onto 𝑆. As in
(2.8) we define a building 𝐼, equipped with 𝑞 : 𝐼 → 𝐵𝑟 , by “filling” all the
spheres 𝑆(𝐴).
(2.12) Besides 𝑞 and its decomposition into chambers, 𝐼 is equipped with
the following additional structure:
– A “composition” 𝐵̃.𝑔 consisting of a chamber 𝐵̃ of 𝐼 with image 𝐵 in 𝑆
and 𝑔 ∈ HomGal (𝐵,𝐶) associating a chamber of 𝐼 with image 𝐶 in 𝑆. The
construction 𝑔 ↦→ 𝐵̃.𝑔 defines an isomorphism of the space analogous to 𝐼
obtained by taking 𝐵 as a fundamental chamber with 𝐼 (for 𝐴0 = 𝐵, this is
an automorphism of 𝐼). In particular,

𝐵̃.(𝑔ℎ) = (𝐵̃.𝑔).ℎ.

(2.13) For each chamber 𝐴 of 𝐼 above 𝐴0, we define a map

𝑖𝐴 : 𝐼+ → 𝐼 (resp. 𝐼+ → 𝐼),

compatible with the projection onto 𝑆 (resp. 𝐵𝑟 ) by sending the closed
chamber (𝐴.𝑔)− of 𝐼+ (resp. the ball 𝑏(𝐴.𝑔) of 𝐼+) onto the chamber (resp.
the ball) of the same name in 𝐼 (resp. 𝐼).
(2.14) Proposition. (i) 𝑖𝐴 identifies 𝐼+ with a closed subspace of 𝐼 and
𝐼+ with a closed subspace of 𝐼.

(ii) We have

𝐼 = lim−−→
𝑛

𝑖 𝐴̃0.𝛥−2𝑛 (𝐼+) and 𝐼 = lim−−→
𝑛

𝑖 𝐴̃0.𝛥−2𝑛 (𝐼+)

The assertions (i) and (ii) for 𝐼+ and 𝐼 follow from the assertions (i) and
(ii) for 𝐼+ and 𝐼.

We prove (i) for 𝐼+ and 𝐼. Let 𝐵 and 𝐶 be two chambers of 𝑆 with
a common facet 𝐹. Let 𝑔 ∈ HomGal+ (𝐴0, 𝐵) and ℎ ∈ HomGal+ (𝐴,𝐶).
Suppose that the facets 𝑞−1𝐹 of (𝐴.𝑔)− and (𝐴.ℎ)− are equal in 𝐼.
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We then have
𝑔−1ℎ = 𝜋𝐹 (𝑒) for 𝑒 ∈ HomGal (𝜋−1

𝐹 𝐵, 𝜋−1
𝐹 𝐶).

By (1.26), we can write 𝑒 = 𝑒1𝑒
−1
2 with 𝑒𝑖 in Gal+. By (1.29), we also have

𝑔𝜋𝐹 (𝑒1) = 𝑔𝜋𝐹 (𝑒2) in Gal+, and the facets 𝑞−1𝐹 of (𝐴.𝑔)− and (𝐴.ℎ)− are
therefore also equal in 𝐼+.

To prove (ii), it suffices to notice that any gallery 𝑔 starting at 𝐴0 in Gal
can be written as 𝑔 = 𝛥−2𝑛𝑔′ with 𝑔′ in Gal+

From (2.14) we find that 𝜋𝑖 (𝐼) = lim−−→ 𝜋𝑖 (𝐼+). Since 𝐼 is a 𝐶𝑊-complex,
we deduce from (2.9) the following result.
(2.15) Theorem. The space 𝐼 is contractible.

The space 𝐼 is thus the bouquet of spheres 𝑆(𝐴) for 𝐴 traversing over
the chambers of 𝐼.

§ 3. Coverings
(3.1) Let 𝑉ℂ be the complexification of 𝑉 , 𝑀ℂ the complexiciation of 𝑀
for 𝑀 ∈ℳ, and

𝑌 = 𝑉ℂ −
ď

𝑀∈ℳ
𝑀ℂ.

In this paragraph, we construct a space 𝑌 above 𝑌 via gluing. The gluing
data will be described using 𝐼 and 𝐼. The facets of 𝑆 and the facets of𝑉 other
than {0} are in canonical bijection, and we will constantly pass between
them. In general, we will also note the corresponding facets; if necessary,
the correspondence will be denoted 𝐹 ↦→ [𝐹].
(3.2) Lemma. Let 𝐴, 𝐵, and 𝐶 be three chambers of 𝐼, with 𝐶 Ă 𝑆(𝐴)X
𝑆(𝐵). Then, 𝑞 induces an isomorphism of 𝑆(𝐴)X𝑆(𝐵) with the intersection
of 𝑆 and the closed half-spaces 𝐷′

𝑀
(𝑞𝐶) containing 𝑞𝐶 limited by a wall

𝑀 which separates 𝑞𝐴 and 𝑞𝐵.
The intersection 𝐷′

𝑀
(𝑞𝐶) is a union of closed chambers. If 𝐶′ is one of

them, 𝑞𝐴 and 𝑞𝐵 are on the same side of any wall which separates 𝑞𝐶 from
𝐶′. We deduce that the lifts to 𝑆(𝐴) or 𝑆(𝐵) of a minimal gallery from 𝑞𝐶

to 𝐶′ coincide, and (𝐶′)− Ă 𝑞(𝑆(𝐴)X𝑆(𝐵)).
Conversely, if a facet 𝐹 is not in the intersection 𝐷′

𝑀
(𝑞𝐶), there exists

a wall 𝑀 such that 𝐹 Ă| 𝑀 which separates 𝑞𝐴 from 𝑞𝐵 and 𝐹 from 𝑞𝐶.
Suppose that it is impossible that 𝐹 Ă 𝑞(𝑆(𝐴)X𝑆(𝐵)). Let 𝐷 be a chamber
of 𝑆 with 𝐹 as a facet and (𝐶0, 𝐶1 . . . 𝐶𝑛+1) be a gallery from 𝑞𝐶 to 𝐷. Let
𝑀𝑖 be the wall which separates 𝐶𝑖 and 𝐶𝑖+1 and 𝛼𝑖 (resp. 𝛽𝑖)= ±1 depending
on if𝐶𝑖+1 and 𝐴 (resp. 𝐵) are or aren’t on the same side of 𝑀𝑖 . By assumption,
𝐹 is a facet of 𝐶𝛥(𝑀0)𝛼0 . . . 𝐶𝛥(𝑀𝑛)𝛼𝑛 and of 𝐶𝛥(𝑀0)𝛽0 . . . 𝐶𝛥(𝑀𝑛)𝛽𝑛 .
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By (2.4) and (1.24), we then have (since 𝑀 ⊃| 𝐹)∑︁
𝑀𝑖=𝑀

𝛼𝑖 =
∑︁
𝑀𝑖=𝑀

𝛽𝑖 ,

which is absurd: one side is worth one, the other −1.
(3.3) Lemma. Let ℛ and ℐ be the “real part” and “imaginary part”
mappings of 𝑉ℂ to 𝑉 . Let 𝑣 ∈ 𝑉ℂ and 𝐹 be the facet of 𝑉 such that ℛ𝑣 ∈ 𝐹.
To have 𝑣 ∈ 𝑌 , it is necessary and sufficient that pr𝐹 (ℐ𝑣) be in a chamber
of (𝑉𝐹 ,ℳ𝐹).

This is clear.
What follows is intuitively based on the fact that any “walk” in 𝐼

(accomplished by following a gallery of the form 𝛥(𝑀0)𝜀0 . . . 𝛥(𝑀𝑛)𝜀𝑛 ,
𝜀𝑖 = ±1) corresponds to a path 𝑐ℎ (a class of paths) in 𝑌 . The image under
ℛ of 𝑐ℎ in 𝑉 passes from chamber to chamber, crossing successive walls
𝑀1, . . . , 𝑀𝑘 at points 𝑚𝑖 . For 𝜀𝑖 = 1 (resp −1) the path passes through one
of two components 𝑅 of ℛ−1 (𝑚𝑖)X𝑌 (in bijection via ℐ with 𝑉 − 𝑀): this
is such that ℐ𝑅 contains (resp doesn’t contain) the previous chamber.
(3.4) Notation. (i) Let 𝐶 be a chamber of (𝑉,ℳ). We let 𝑌 (𝐶) denote
the open set of 𝑌 made up of the 𝑥 ∈ 𝑉ℂ satisfying the following condition:
– if 𝐹 is the facet of 𝑉 such that ℛ𝑥 ∈ 𝐹, then pr𝐹ℐ𝑥 ∈ 𝜋′𝐹 (𝐶).

(ii) Let 𝐴 and 𝐵 be two chambers of 𝐼. If 𝑆(𝐴)X 𝑆(𝐵) contains a
chamber 𝐶, we temporarily let 𝑌 ′ (𝐴, 𝐵) denote the intersection of the open
half spaces 𝐷′

𝑀
(𝑞𝐶)0, for 𝑀 as in 3.2. We set

𝑌 (𝐴, 𝐵) = 𝑌 (𝑞𝐴)X𝑌 (𝑞𝐵)Xℛ
−1𝑌 ′ (𝐴, 𝐵) Ă 𝑉ℂ.

If 𝑆(𝐴)X𝑆(𝐵) does not contain a chamber, we set 𝑌 (𝐴, 𝐵) = ∅.
(iii) For a facet 𝐹 of 𝑉 , the star 𝐸𝑡 (𝐹) is the union of the (open) facets

𝐺 of (𝑉,ℳ) such that 𝐹 Ă 𝐺− .
(iv) For a facet 𝐹 of 𝑉 and a chamber 𝐶 of (𝑉𝐹 ,ℳ𝐹), we set

𝑉 (𝐹,𝐶) = {𝑣 ∈ 𝑉ℂ |ℛ𝑣 ∈ 𝐸𝑡 (𝐹) and pr𝐹ℐ𝑣 ∈ 𝐶}.

(3.5) Lemma. Let 𝐺 be a facet of 𝑉 . The sets 𝑉 (𝐹,𝐶) for a facet 𝐹 such
that𝐺 Ă 𝐹− and a chamber𝐶 of𝑉𝐹 form an open covering of𝑌Xℛ

−1 (𝐸𝑡𝐺).
In particular (when 𝐺 = {0}), the sets 𝑉 (𝐹,𝐶) cover 𝑌 .

If 𝑥 ∈ 𝑌Xℛ
−1 (𝐸𝑡𝐺) and ℛ𝑥 ∈ 𝐹, then 𝑥 is in one of the sets 𝑉 (𝐹,𝐶)

(3.3).
(3.6) Let 𝑌 ′ be the disjoint sum, indexed by the balls 𝑏(𝐴) of 𝐼,

𝑌 ′ =
∐
𝑏 (𝐴)

𝑌 (𝑞𝐴).
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We let 𝑌 ′ (𝑏(𝐴)) denote the component of index 𝑏(𝐴). We then have an
obvious projection 𝑝′ : 𝑌 ′ → 𝑌 . Let 𝑅 be the following relation on 𝑌 ′:

For 𝑥 ∈ 𝑌 ′ (𝑏(𝐴)) and 𝑦 ∈ 𝑌 ′ (𝑏(𝐵)), 𝑅(𝑥, 𝑦) means that 𝑝′ (𝑥) = 𝑝′ (𝑦)
and that 𝑝′ (𝑥), 𝑝′ (𝑦) ∈ 𝑌 (𝐴, 𝐵).

This is an equivalence relation because
(
cf. (3.2)

)
𝑌 (𝐴, 𝐵)X𝑌 (𝐵,𝐶) Ă

𝑌 (𝐴,𝐶). We have
(3.6.1) The equivalence class under 𝑅 of an open set of 𝑌 ′ is again open.

We set 𝑌 = 𝑌 ′/𝑅. We then have an obvious projection

𝑝 : 𝑌 → 𝑌 .

For each ball 𝑏(𝐴) of 𝐼, we let 𝑌 (𝑏(𝐴)) denote the image of 𝑌 ′ (𝑏(𝐴)) in 𝑌 .
The following theorem implies the first theorem of the introduction.

(3.7) Theorem. 𝑌 is a contractible covering of 𝑌 .
A. 𝑌 is a covering of 𝑌 .
We show, for 𝑉 (𝐹,𝐶) as in (3.4)(iv), that 𝑝−1𝑉 (𝐹,𝐶) is a sum of copies

of 𝑉 (𝐹,𝐶).
a) Let 𝑏(𝐴) be a ball in 𝐼. For a chamber 𝐵 such that 𝐹 Ă 𝐵− , take the

chamber of 𝐼
𝐶′𝐵 = 𝐴.𝑢(𝐴, 𝐵) 𝑢

(
𝜋𝐹 (𝐶), 𝐵

)−1
.

By construction, 𝐵 Ă 𝑞
(
𝑆(𝐴)X𝑆(𝐶′

𝐵
)
)

and in particular, if 𝐹 ≠ {0},

(3.7.1) [𝐹] Ă 𝑞
(
𝑆(𝐴)X𝑆(𝐶′𝐵)

)
.

We now prove that

(3.7.2) 𝑌
(
𝑏(𝐴)

)
X 𝑝−1𝑉 (𝐹,𝐶) Ă

ď

𝐹Ă𝐵−
𝑌
(
𝑏(𝐶′𝐵)

)
.

Let 𝑥 be an element of the left hand side. Let 𝐺 be the facet of 𝑉 to
which ℛ 𝑝 𝑥 belongs. We have 𝐹 Ă 𝐺− . For 𝐵, take a chamber which has
𝐺 as a facet. By assumption, we have

pr𝐺ℐ 𝑝 𝑥 ∈ 𝜋′𝐺 (𝐴) and pr𝐹ℐ 𝑝 𝑥 ∈ 𝐶.

So, we have 𝜋′
𝐺
(𝐴) = 𝜋′

𝐺
(𝜋𝐹𝐶). We also deduce from (3.2) that each

chamber containing 𝐺 has a facet is in 𝑞
(
𝑆(𝐴)X 𝑆(𝐶′

𝐵
)
)
, that 𝑝 𝑥 is in

𝑌 (𝐴,𝐶′
𝐵
), and that therefore 𝑥 ∈ 𝑌

(
𝑏(𝐶′

𝐵
)
)
.

b) Let us put 𝑌 ′ (𝐹,𝐶) =
Ť

𝑞 (𝐶′
𝐵
)=𝐶

(
𝑌 ′ (𝑏(𝐶′)

)
X 𝑝′−1 (𝑉 (𝐹,𝐶)

) )
. By a),

we have together

𝑝−1𝑉 (𝐹,𝐶) = 𝑌 ′ (𝐹,𝐶)/𝑅.
This is also an isomorphism of topological spaces, by (3.6.1), because
𝑌 ′ (𝐹,𝐶) is open in 𝑌 ′. By (3.2), the equivalence relation induced by 𝑅 on
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Ť

𝑞 (𝐶′
𝐵
)=𝐶

𝑌 ′
(
𝑏(𝐶′)

)
is trivial. We conclude by remarking that, for each 𝐶′

above 𝐶,
𝑉 (𝐹,𝐶) Ă 𝑌

(
𝑏(𝐶′)

)
.

B. An open covering of 𝑌 .
(3.7.3) Notation. (i) For 𝐹 a facet of 𝐼,

𝑌 (𝐹) =
ď

𝐹Ă𝑆 (𝐶 )

(
𝑌
(
𝑏(𝐶)

)
X 𝑝−1

ℛ
−1𝐸𝑡 (𝑞𝐹)

)
.

(ii) For 𝑜(𝐴) the center of a ball 𝑏(𝐴) of 𝐼,

𝑌
(
𝑜(𝐴)

)
= 𝑌

(
𝑏(𝐴)

)
X 𝑝−1𝑉 ({0}, 𝐴).

(3.7.4) Lemma. (i) The sets𝑌 (𝑠) for 𝑠 a vertex of 𝐼 form an open covering
of𝑌 of which 𝐼 is the nerve (i.e., a family of𝑌 (𝑠) has a non-empty intersection
if and only if the 𝑠 correspond to the vertices of a facet of 𝐼).

(ii) If a facet 𝐹 of 𝐼 has vertices 𝑠0, . . . , 𝑠𝑝 , then

𝑌 (𝐹) = 𝑌 (𝑠0)X · · ·X𝑌 (𝑠𝑝).

(iii) If 𝐹 Ă 𝑆(𝐴), then 𝑌
(
𝑜(𝐴)

)
X𝑌 (𝐹) is contractible; 𝑌 (𝑜(𝐴)) is

contractible.
(3.7.4.1) Let 𝐹𝑖 (𝑖 = 1, 2) be two facets of 𝐼 and 𝐶𝑖 (𝑖 = 1, 2) two chambers
of 𝐼 such that 𝐹𝑖 Ă 𝑆(𝐶𝑖) and that(
𝑌 (𝑏(𝐶1)

)
X 𝑝−1

ℛ
−1𝐸𝑡 (𝑞𝐹1)

)
X

(
𝑌 (𝑏(𝐶2)

)
X 𝑝−1

ℛ
−1𝐸𝑡 (𝑞𝐹2)

)
=| ∅.

So, 𝐹1 and 𝐹2 span a facet 𝐹 of 𝐼
(
unique by (2.5) – (2.11)

)
, 𝐹 Ă 𝑆(𝐶𝑖), and

the former intersection coincides with

𝑌
(
𝑏(𝐶1)

)
X𝑌

(
𝑏(𝐶2)

)
X 𝑝−1

ℛ
−1𝐸𝑡 (𝐹).

By assumption

𝑌 (𝐶1, 𝐶2)Xℛ
−1𝐸𝑡 (𝑞𝐹1)Xℛ

−1𝐸𝑡 (𝑞𝐹2) =| ∅;

𝐹1 and 𝐹2 are in 𝑆(𝐶1)X 𝑆(𝐶2) and they span a facet of 𝐹. Moreover,
𝐸𝑡 (𝑞𝐹1)X𝐸𝑡 (𝑞𝐹2) = 𝐸𝑡 (𝑞𝐹), hence the declared formula.

By (3.7.4.1), we deduce that 𝑌 (𝐹1)X𝑌 (𝐹2) is empty if 𝐹1 and 𝐹2 don’t
span a common facet 𝐹, and is equal to

č

𝐹Ă𝑆 (𝐶 )
𝑌 (𝑏𝐶)X 𝑝−1

ℛ
−1𝐸𝑡 (𝐹) = 𝑌 (𝐹)

otherwise (making 𝐶1 = 𝐶2). This shows (ii) and one part of (i).
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(3.7.4.2) If 𝑜(𝐴) =| 𝑜(𝐵), then 𝑌
(
𝑜(𝐴)

)
X𝑌

(
𝑜(𝐵)

)
= ∅.

If 𝑞𝐴 = 𝑞𝐵, we have 𝑌
(
𝑏(𝐴)

)
X𝑌

(
𝑏(𝐵)

)
= ∅. If 𝑞𝐴 ≠ 𝑞𝐵, we have

𝑝𝑌
(
𝑜(𝐴)

)
X 𝑝𝑌

(
𝑜(𝐵)

)
= ∅.

(3.7.4.3) If 𝐹 Ă| 𝑆(𝐴), then 𝑌
(
𝑜(𝐴)

)
X𝑌 (𝐹) = ∅.

If 𝐹 Ă 𝑆(𝐵), we have 𝐹 Ă| 𝑆(𝐴)X𝑆(𝐵) and

𝐸𝑡 (𝑞𝐹)X𝑌 (𝐴, 𝐵) = 𝐸𝑡 (𝑞𝐹)X 𝑝
(
𝑌
(
𝑏(𝐴)

)
X𝑌

(
𝑏(𝐵)

) )
= ∅.

It is clear that:
(3.7.4.4) If 𝐹 Ă 𝑆(𝐴), then 𝑝 induces an isomorphism of 𝑌

(
𝑜(𝐴)

)
X𝑌 (𝐹)

with 𝑌 (𝑞𝐴)Xℛ
−1𝐸𝑡 (𝑞𝐹).

Lemma (3.7.4) then results in:
(3.7.5) Lemma. For each facet 𝐹 of 𝑉 and each chamber 𝐴,

𝑌 (𝐴)Xℛ
−1𝐸𝑡 (𝐹)

is contractible.
Let 𝑣0 be a vector such that ℛ𝑣0 ∈ 𝐹 and ℐ𝑣0 ∈ 𝐴. Then for 0 ≦ 𝑡 ≦ 1,

𝜑𝑡 : 𝑣 ↦→ 𝑣0 + 𝑡 (𝑣 − 𝑣0) is a map from 𝑌 (𝐴) and ℛ
−1𝐸𝑡 (𝐹) to themselves.

We have 𝜑0
(
𝑌 (𝐴)Xℛ

−1𝐸𝑡 (𝐹)
)
= {𝑣0} and 𝜑1 = Id.

C. Study of 𝑌 (𝐹) (𝐹 a facet of 𝐼).
By (3.5), (3.7.1), and (3.7.2), we have

(3.7.6) 𝑌 (𝐹) =
ď

𝐹Ă𝐵−
𝑌
(
𝑏(𝐵)

)
X 𝑝−1

ℛ
−1𝐸𝑡 (𝐹).

We choose a “fundamental chamber” 𝐴𝐹,0 in (𝑉𝐹 ,ℳ𝐹) and let 𝐼𝐹 denote
the corresponding building. We also choose 𝐴̃𝐼

𝐹,0 in 𝐼 above 𝜋𝐹 (𝐴𝐹,0).
For each chamber 𝐵 = 𝐴̃0.𝑔𝐹 of 𝐼𝐹 , we denote by 𝜋𝐹 (𝐵) the chamber
𝐴̃𝐼
𝐹,0.𝜋𝐹 (𝑔𝐹) of 𝐼. By (2.10), (3.7.6) can be rewritten as

𝑌 (𝐹) =
ď

𝐵 in 𝐼𝐹

𝑌
(
𝑏(𝜋𝐹 (𝐵))

)
X 𝑝−1

ℛ
−1𝐸𝑡 (𝐹).

Let
𝑌𝐹 = (𝑉𝐹)ℂ −

ď

𝑀∈ℳ𝐹

𝑀ℂ

and 𝑌𝐹 be the covering of 𝑌𝐹 defined using 𝐼𝐹 .
Whenever 𝐵 and 𝐶 are in 𝐼𝐹 , it follows from (1.30) that the chambers of

𝑆 in 𝑌
(
𝜋𝐹 (𝐵), 𝜋𝐹 (𝐶)

)
X𝐸𝑡 (𝐹) are exactly the 𝜋𝐹 (𝐷) for 𝐷 in 𝑌𝐹 (𝐵,𝐶).
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The gluings that define𝑌 (𝐹) and𝑌𝐹 are also compatible, and there exists
a unique commutative diagram

(3.7.7)

𝑌𝐹 𝑌 (𝐹)

ℛ
−1𝐸𝑡 (𝐹) Ă 𝑌𝑌𝐹

pr𝐹

which sends 𝑌
(
𝑏(𝜋𝐹 (𝐵))

)
X 𝑝−1

ℛ
−1𝐸𝑡 (𝐹) into 𝑌𝐹

(
𝑏(𝐵)

)
for 𝐵 a chamber

of 𝐼𝐹 . The first vertical arrow thus also the second are coverings.
One easily verifies that the map pr𝐹 of (3.7.7) is a homotopy equivalence,

from which
(3.8) Lemma. 𝑌𝐹 and 𝑌 (𝐹) have the same homotopy type.

D. End of the proof.

We will prove (3.7) by induction on 𝑟 = dim 𝑉 . Let 𝒰 be the open
covering of 𝑌 by the 𝑌 (𝑠), for a vertex 𝑠 of 𝐼. By (3.7.4)(i), 𝑈̂ is the
nerve of 𝒰. By (3.7.4), (3.8), and the induction hypothesis, the non-empty
intersections of open sets belonging to 𝒰 are contractible. This implies [6]
that 𝑌 and 𝐼 = Nerve(𝒰) have the same homotopy type. We conclude with
(2.15).

§ 4. Braid groups
(4.1) Let 𝑉 be a finite dimensional real vector space and𝑊 Ă 𝐺𝐿 (𝑉) be
a finite group generated by reflections. We suppose that 𝑉𝑊 = {0}. Let
𝛷 be any euclidean structure invariant under 𝑊 and let ℳ be the set of
hyperplanes 𝑀 such that the orthogonal reflection corresponding to ℳ is in
𝑊 . We know that

a) (𝑉,ℳ) satisfies 1.6 ([1] V 3.9 prop. 7);
b)𝑊 permutes the chambers of (𝑉,ℳ) strictly simply transitively ([1]

V 3.2 Th. 1);
c) if 𝑥 ∈ 𝑉 belongs to the closed chamber 𝐴, its stabilizer is generated by

the reflections with respect to the walls of 𝐴 containing 𝑥 ([1] V 3.3 prop. 1);
d)

(
following from c)

)
the group𝑊 acts freely on 𝑌𝑊 = 𝑉ℂ −

Ť

𝑀∈ℳ
𝑀ℂ.

From b), if 𝐶0 and 𝐶1 are two chambers, there exists a unique 𝑤 ∈ 𝑊
such that 𝑤𝐶0 = 𝐶1; this 𝑤 induces a transitive system of bijections between
the walls of the different chambers. Passing to the quotient, one obtains a set
𝐷 of dim(𝑉) elements and, for each chamber 𝐶, a bijection 𝜑𝐶 of 𝐷 with
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the set of walls of 𝐶. We have

(4.1.1) 𝜑𝑤𝐶 (𝑖) = 𝑤𝜑𝐶 (𝑖) (𝑤 ∈ 𝑊).

For the definition of the Coxeter matrix (𝑚𝑖 𝑗 )𝑖, 𝑗∈𝐷 and that of the Coxeter
graph, we refer to [1] V 3.4.
(4.2) Choose a chamber 𝐴0 of (𝑉,ℳ). For 𝑖 ∈ 𝐷, let 𝑤𝑖 be the reflection
based on the wall 𝜑𝐴0 (𝑖). [1] V 3.2 Th. 1 says that𝑊 is generated by the 𝑤𝑖 ,
these generators only being subject to the relations

(𝑤𝑖𝑤 𝑗 )𝑚𝑖 𝑗 = 𝑒.

(4.3) Let 𝑋𝑊 = 𝑌𝑊/𝑊 : by (4.1)d), 𝑌𝑊 is a covering of 𝑋𝑊 . Let 𝑦0 ∈ 𝐴0
have image 𝑥0 ∈ 𝑋𝑊 . For each 𝑖 ∈ 𝐷, let ℓ′

𝑖
be the homotopy class of paths

in 𝑌𝑊 , from 𝑦0 to 𝑤𝑖 (𝑦0), which, for 𝑦 ∈ 𝐴0, contains the broken line of
successive vertices 𝑦0, 𝑦0 + 𝑖𝑦0, 𝑤𝑖 (𝑦0) + 𝑖𝑦0, 𝑤𝑖 (𝑦0). The image ℓ𝑖 of ℓ′

𝑖
in

𝑋𝑊 is a loop with basepoint 𝑥0.
(4.4) Theorem. (i) The fundamental group 𝜋1 (𝑋𝑊 , 𝑥0) is generated by
the ℓ𝑖; these are subject only to the relations

(4.4.1) prod(𝑚𝑖 𝑗 ; ℓ𝑖 , ℓ 𝑗 ) = prod(𝑚 𝑗𝑖; ℓ 𝑗 , ℓ𝑖).

(ii) The universal cover of 𝑋𝑊 is contractible: 𝑋𝑊 is a K(𝜋; 1).
Assertion (i) is proved in Brieskorn [3]. Another proof will be outlined

in (4.18) below. As explained in the introduction, (ii) results from (3.7) and
(4.1).
(4.5) In §1, we drew heavily on the study of the Artin braid groups by
Garside [4]; from the results obtained, we can now deduce information on
all the groups of type 𝜋1 (𝑋𝑊 , 𝑥0) (Garside had already considered some of
them). The translation is based on (4.6), (4.7) below.
(4.6) Let 𝐺 = (𝐶0, . . . , 𝐶𝑛) be a gallery and 𝑀𝑖 the wall which separates
𝐶𝑖−1 from 𝐶𝑖 (1 ≦ 𝑖 ≦ 𝑛). We have 𝜑−1

𝐶𝑖−1
(𝑀𝑖) = 𝜑−1

𝐶𝑖
(𝑀𝑖). We denote by

ℓ(𝐺) the element 𝜑−1
𝐶1
(𝑀1) . . . 𝜑−1

𝐶𝑛
(𝑀𝑛) of 𝐿+ (𝐷) (0.1).

The map ℓ induces a bijection of the set of galleries 𝐺 of a given source
in 𝐿+ (𝐷). We have

ℓ
(
𝑤(𝐺)

)
= ℓ(𝐺) (for 𝑤 ∈ 𝑊);(4.6.1)

ℓ(𝐺0 𝐺1) = ℓ(𝐺0) ℓ(𝐺1) (for 𝐺0 and 𝐺1 composable).(4.6.2)

Let 𝑤 : 𝐿 (𝐷) → 𝑊 be the homomorphism which extends the map
𝑖 ↦→ 𝑤𝑖 from 𝐷 onto𝑊 .
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(4.7) Proposition. For each gallery 𝐺 of source 𝐴0, we have

𝐴0.𝐺 = 𝑤
(
ℓ(𝐺)

)
(𝐴0).

This is an evolution of the identity

[(𝑤1 . . . 𝑤𝑛−1) 𝑤𝑛 (𝑤1 . . . 𝑤𝑛−1)−1]
· [(𝑤1 . . . 𝑤𝑛−2) 𝑤𝑛−1 (𝑤1 . . . 𝑤𝑛−2)−1] . . . [𝑤1] = 𝑤1 . . . 𝑤𝑛.

(4.8) From this proposition we deduce that, for 𝑤 ∈ 𝑊 , the integer
𝑑 (𝐴0, 𝑤(𝐴0)) is the smallest length of words in 𝑤𝑖 which equal 𝑤; more
precisely, ℓ induces a bijection of the set of minimal galleries from 𝐴0 to
𝑤𝐴0 with the set of words 𝑚 ∈ 𝐿 (𝐷) of minimal length such that 𝑤 = 𝑤(𝑚).
(4.9) Definitions. (i) The braid monoid𝐺+ of type 𝐷 is the unitial monoid
generated by 𝐷, the generators 𝑖 ∈ 𝐷 being subject only to the relations

(4.9.1) prod(𝑚𝑖 𝑗 ; 𝑖, 𝑗) = prod(𝑚𝑖 𝑗 ; 𝑗 , 𝑖)

(ii) The braid group 𝐺 (or generalized braid group) of type 𝐷 is the
group generated by 𝐷, the generators being subject only to (4.9.1).
(4.10) We note that𝑊 again admits the presentation

prod(𝑚𝑖 𝑗 ;𝑤𝑖 , 𝑤 𝑗 ) = prod(𝑚𝑖 𝑗 ;𝑤 𝑗 , 𝑤𝑖)(4.10.1)

𝑤2
𝑖 = 𝑒.(4.10.2)

so that 𝑖 ↦→ 𝑤𝑖 extends to a homomorphism of 𝐺 onto𝑊 .
(4.11) One may verify by the definitions that two galleries 𝐺0 and 𝐺1 of
the same source are equivalent if and only if ℓ(𝐺0) and ℓ(𝐺1) have the same
image in𝐺+. Taking into account (4.9), (1.12) therefore admits the following
adaptation ([1] IV 1.6 prop. 5).
(4.12) Recall. Let 𝑤 ∈ 𝑊 . The image of the words 𝑚 ∈ 𝐿 (𝐷) in 𝐺+ of
minimal length among those such that 𝑤 = 𝑤(𝑚) depends only on 𝑤.

This image will be denoted 𝑟 (𝑤); 𝑟 is a section of 𝑤 : 𝐺+ → 𝑊 . By
(4.7), we have 𝑟 (𝑤) = ℓ

(
𝑢(𝐴0, 𝑤𝐴0)

)
.

Likewise, [1] IV 1.4 lemma 2 corresponds to (1.11).
(4.13) The “quotient” category of Gal+ (𝑉,ℳ) by𝑊 is defined as follows:

a) The set of objects is reduced to one element: this is

Ob
(
Gal+ (𝑉,ℳ)

)
/𝑊.

b) The monoid of arrows is Ar
(
Gal+ (𝑉,ℳ)

)
/𝑊 , and passing to the

quotient
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Gal+ (𝑉ℳ) → Gal+ (𝑉,ℳ)/𝑊
is a functor.

This category, having only one object, is identified with the monoid of
its arrows. By (4.6.1), (4.6.2), and (4.11), ℓ identifies this monoid with 𝐺+.

We define Gal(𝑉,ℳ)/𝑊 analagously. This category has only one object
and, by its universal property, ℓ extends to an isomorphism of the group of
its arrows with 𝐺:

Gal+ (𝑉,ℳ) Gal+ (𝑉,ℳ)/𝑊 𝐺+

Gal(𝑉,ℳ) Gal(𝑉,ℳ)/𝑊 𝐺

∼
ℓ

∼
ℓ

(4.14) Theorem. (i) In 𝐺+, the left and right translation maps are injec-
tive.

(ii) 𝐺+ satisfies the left and right conditions of Öre. It follows from (i)
that 𝐺+ embeds in 𝐺.

(iii) For a subset 𝐽 of 𝐷, let 𝐺+
𝐽

(resp. 𝐺𝐽 ) be the submonoid (resp. sub-
group) of 𝐺+ (resp. 𝐺) generated by the 𝑖 ∈ 𝐽. Then, the obvious map
identifies 𝐺+

𝐽
(resp. 𝐺𝐽 ) with the braid monoid (resp. braid group) of type 𝐽.

(iv) We have 𝐺+
𝐽
= 𝐺𝐽X𝐺+.

(v) If 𝐽 and 𝐾 are two subsets of 𝐷, we have 𝐺𝐽X𝐺𝐾 = 𝐺𝐽∩𝐾 .
(vi) Let 𝑛(𝑖) be the number of elements of 𝐺+ of length 𝑖 and set

𝑓 =
∑︁

𝑛(𝑖)𝑡𝑖 . For 𝐽 Ă 𝐷, let 𝑚(𝐽) be the number of walls which pass
through the intersection of walls of one (any) chamber 𝐴, indexed by 𝐽 (=
number of reflections in the Weyl group𝑊𝐽 ). We have

𝑓 =
( ∑︁
𝐽Ă𝐷

(−1) |𝐽 | 𝑡𝑚(𝐽 )
)−1
.

These assertions translate respectively: (i): (1.1)(i) and (ii); (ii): (1.26)(ii)
and its transformation by passing to opposite galleries (cf. also (4.16) below);
(iii): (1.30); (iv): (1.32); (v): (1.31); (vi): (1.21) (the 𝑓𝐴 of loc. cit. are all
equal to 𝑓 ).

Let 𝑥, 𝑦 ∈ 𝐺+. We say that 𝑥 starts with 𝑦 if there exists a 𝑧 in 𝐺+ with
𝑥 = 𝑦𝑧. The proposition (1.19)(iii) then translates as
(4.15) Lemma. Let 𝑥 ∈ 𝐺+. There exists a chamber 𝐶 such that, for each
𝑤 ∈ 𝑊 , 𝑥 starts with 𝑟 (𝑤) if and only if 𝑤𝐴0 ∈ 𝐷 (𝐴0, 𝐶).
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(4.16) Let 𝐽 be a subset of 𝐷 and 𝑃 the intersection of the walls 𝜑𝐴0 (𝑖)
(𝑖 ∈ 𝐽). We let 𝛥(𝐽) denote the element ℓ(𝑢(𝐴0, 𝐴0.𝛥(𝑃))) in 𝐺+; we set
𝛥 = 𝛥(𝐷). Let 𝑖 ↦→ 𝑖 = 𝜑−1

−𝐶𝜑𝐶 (𝑖) be the opposite involution of 𝐷. We also
let 𝑤 ↦→ 𝑤 denote the automorphisms of 𝐿+ (𝐷), 𝐺+, and 𝐺 which send 𝑖 to
𝑖 (we have 𝑚𝑖 𝑗 = 𝑚𝑖 𝑗 ). Adapting (1.26) with the aid of (4.4), we find that for
𝑔 in 𝐺+ or 𝐺, we have

(4.16.1) 𝑔𝛥 = 𝛥𝑔.

In particular, 𝛥2 is central.
For any 𝑖 ∈ 𝐷, 𝛥 “starts” with 𝑖: we have 𝛥 = 𝑖𝑥, in 𝐺+. Since then

(4.17) Proposition. 𝐺 is derived from 𝐺+ by making the central element
𝛥2 invertible.
(4.18) The description (2.11), (2.5)–(2.7) of the building 𝐼 associated with
(𝑉,ℳ) can be translated as well.

a) The set of vertices of 𝐼 is

𝐼0 =
∐
𝑖∈𝐷

𝐺/𝐺𝐷−{𝑖} .

b) For a set of vertices to span a simplex, it is necessary and sufficient
that it be contained in the set of cosets 𝑔𝐺𝐷−{𝑖} , for some 𝑔 ∈ 𝐺.

c) The fundamental sphere 𝑆0 = 𝑆(𝐴0) is the union of the fundamental
simplex (spanned by the coset of 𝑒 in 𝐺/𝐺𝐷−{𝑖}) and of its transforms by
𝑟 (𝑤) (𝑤 ∈ 𝑊).

The preceding description gives an obvious left action of 𝐺 on 𝐼. It
respects the set of spheres 𝑆(𝐴) and the correspondence 𝐴 ↦→ 𝑆(𝐴).

By transporting the structure, 𝐺 acts on the covering 𝑌𝑊 of 𝑌𝑊 (3.6), we
have an equivariant morphism

(𝐺 − 𝑌𝑊 ) → (𝑊 − 𝑌𝑊 ).

We conclude that 𝐺 is the fundamental group of 𝑋𝑊 = 𝑌𝑊/𝑊 , and (4.4)(i).
(4.19) To be complete, let us show that the word problem, the conjugacy
problem, and the question of calculating the center of G can be resolved as in
[4]. If the Coxeter graph 𝐷 of𝑊 is the disjoint sum of graphs 𝐷𝛼, the braid
group of type 𝐷 is a product of the braid groups of type 𝐷𝛼. The essential
case is therefore that of a connected graph 𝐷.
(4.20) The word problem: there is a decision procedure to know if two
elements 𝑚 and 𝑛 of 𝐿 (𝐷) have the same image in 𝐺.
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a) It is known that it is decidable that 𝑚 and 𝑛 in 𝐿+ (𝐷) have the same
image in 𝐺+, because the imposed relations do not change the length of the
words, and there are only a finite number of words of given length. One can
also use (1.22).

b) For any 𝑚𝑖 (𝑖 = 1, 2) in the free group 𝐿 (𝐷) generated by 𝐷, we
can calclate 𝑚′

𝑖
∈ 𝐿+ (𝐷) and 𝑘 ≧ 0 such that 𝑚𝑖 and 𝑚′

𝑖
𝛥−𝑘 have the same

image in 𝐺
(
cf. (4.17)

)
; 𝑚1 and 𝑚2 then have the same image in 𝐺 if and

only if 𝑚′1 and 𝑚′2 have the same image in 𝐺+.
(4.21) Theorem. If the (non-empty) Coxeter graph 𝐷 is connected and the
opposite involution is trivial (resp. non-trivial), the center of 𝐺 is infinite
cyclic, generated by 𝛥 (resp. 𝛥2).

Consider the following property of 𝑥 ∈ 𝐺+.
(∗) For any 𝑖 ∈ 𝐷, there exists an 𝑖′ ∈ 𝐷 such that 𝑖𝑥 = 𝑥𝑖′.

It suffices to show that, if 𝑥 satisfies (∗) and 𝑥 =| 𝑒, then 𝑥 = 𝛥𝑦 with
𝑦 ∈ 𝐺+. By induction on the length of 𝑥, we will deduce that if 𝑥 satisfies
(∗), then 𝑥 is of the form 𝛥𝑘 (𝑘 ≧ 0); by (4.14)(i) and (4.17), such elements
of 𝐺 are contained in the set of 𝛥𝑘 (𝑘 ∈ ℤ) and the assertion follows from
(4.16.1).

So, let 𝑥 ∈ 𝐺+ satisfy (∗). Let 𝐶 be as in (4.15) and 𝑤 the image of
ℓ𝑢(𝐴0, 𝐶) in 𝑊 . We can write 𝑥 = 𝑟 (𝑤)𝑦, with 𝑦 ∈ 𝐺+. Let 𝑖 ∈ 𝐷. By
(∗), 𝑖𝑥 = 𝑟 (𝑤)𝑦𝑖′ starts with 𝑟 (𝑤); from (1.23), we then conclude that 𝑖𝑟 (𝑤)
starts with 𝑟 (𝑤): 𝑖𝑟 (𝑤) = 𝑟 (𝑤)𝑖′′. In particular, for each 𝑖, there exists an 𝑖′′
with 𝑖𝑤 = 𝑤𝑖′′; this means that any wall of 𝐴0 is also a wall of 𝑤𝐴0. Among
the 2 |𝐷 | open simplicial cones bounded by the walls 𝐴0, only 𝐴0 and −𝐴0
are chambers: these are the only ones whose angles between the faces are
all ≦ 𝜋/2 (here, we use the connectivity of 𝐷). If 𝑥 =| 𝑒, we have that 𝑤 =| 𝑒
and so 𝑤𝐴0 = −𝐴0. Therefore 𝛥 = 𝑟 (𝑤), completing the demonstration.
(4.22) The derived group. Let 𝐷′ be the graph with 𝐷 as its set of vertices,
two vertices being connected by an edge if and only if 𝑚𝑖 𝑗 is odd. Let 𝐷0 be
the set of connected components of 𝐷′. We define an epimorphism

Lg : 𝐺 → ℤ𝐷0

by sending 𝑖 to the basis vector corresponding to the connected component
of 𝐷0 containing 𝑖. One shows immediately that Lg idenifies ℤ𝐷0 with the
largest abelian quotient of 𝐺.
(4.23) The conjugation problem. This is a question of giving a decision
process to know if two elements 𝑥 and 𝑦 of 𝐺

(
given explicitly as images of

words in 𝐿 (𝐷)
)

are conjugates. Since 𝛥2 is central, 𝛥−2𝑘𝑎 and 𝛥−2𝑘𝑏 are
conjugate if and only if 𝑎 and 𝑏 are. By (4.17), it is therefore sufficient to
treat the case where 𝑥, 𝑦 ∈ 𝐺+. Likewise, if 𝑥 and 𝑦 are conjugates, there
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is an 𝑎 in 𝐺+ such that 𝑥𝑎 = 𝑎𝑦. If 𝑥 and 𝑦 are conjugates, Lg(𝑥) = Lg(𝑦).
There are only a finite number of 𝑥 ∈ 𝐺+ of given “length” Lg(𝑥) and𝑊 is
finite. The existence of a decision process then follows from (4.20) and the
following lemma.
(4.24) Lemma. Let 𝑥, 𝑦 be in 𝐺+. If 𝑥 and 𝑦 are conjugates, there exists
a sequence 𝑥0 = 𝑥, 𝑥1, . . . , 𝑥𝑛 = 𝑦 of elements of 𝐺+ and a sequence of
elements 𝑤𝑖 of𝑊 such that

𝑥𝑖+1𝑟 (𝑤𝑖) = 𝑟 (𝑤𝑖)𝑥𝑖 .
Let 𝑎 ∈ 𝐺+ be such that 𝑥𝑎 = 𝑎𝑦. Set 𝑎 = 𝑟 (𝑤0) . . . 𝑟 (𝑤𝑛−1), with 𝑤𝑖

the element of maximal length in 𝑊 such that 𝑟 (𝑤𝑖) . . . 𝑟 (𝑤𝑛−1) can be
written in the form 𝑟 (𝑤𝑖)𝑏𝑖 with 𝑏𝑖 ∈ 𝐺+ (4.15). Let 𝑎𝑖 = 𝑟 (𝑤0) . . . 𝑟 (𝑤𝑖).
We prove that 𝑥𝑖 = 𝑎−1

𝑖
𝑥𝑎𝑖 is in 𝐺+, so that the 𝑥𝑖 and 𝑤𝑖 will answer the

problem.
It follows from (1.23) that, for all 𝑤 ∈ 𝑊 , if 𝑥𝑎 starts with 𝑟 (𝑤), then

𝑥𝑟 (𝑤0) also starts with 𝑟 (𝑤). In particular, since 𝑥𝑎 = 𝑎𝑦 = 𝑟 (𝑤0)𝑏0𝑦
starts with 𝑟 (𝑤0), 𝑥𝑟 (𝑤0)𝑟 (𝑤0)𝑥1 with 𝑥1 ∈ 𝐺+. We complete the proof by
proceeding by induction on 𝑛.

Remark. Let 𝜎 be an automorphism of the Coxeter graph 𝐷, and let 𝜎
also denote the corresponding automorphism of 𝐺. We have 𝛥𝜎 = 𝛥. The
preceding arguments still apply to the question of knowing, for 𝑥, 𝑦 ∈ 𝐺, if
there exists 𝑎 in 𝐺 such that 𝑥𝑎 = 𝑎𝜎𝑦. This reduces to taking 𝑥, 𝑦, and 𝑎 in
𝐺+. In this case and, with the previous notation, if 𝑥𝑎 = 𝑎𝜎𝑦, the (𝑎−1

𝑖
)𝜎𝑥𝑎𝑖

are in 𝐺+. Taking 𝜎 to be the involution 𝑖 ↦→ 𝑖, we find a criterion analagous
to (4.24) for the conjugation of 𝛥𝑥 and 𝛥𝑦 (𝑥, 𝑦 ∈ 𝐺+).
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